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CONVERSION TABLE

Conversion factors for U.S. Customary to metric (SI) units of measurement

MULTPPLY > BY p TOGET
TOGET - BY . DIVIDE
angstrom 1.000000 x E -10 meters (m)

atmosphere (normal) 1.01325 x E +2 kilo pascal (kPa)

bar 1.000000 x E +2 kilo pascal (kPa)

barn 1.000000 x E -28 meter? (m?)

British thermal unit (thermochemical) 1.054350 x E +3 joule (1)

calorie (thermochemical) 4.184000 joule (1)

cal (thermochemical) Jem? 4.184000 x E -2 mega joule/m? (MJ/m?2)
curie 3.700000 x E +1 *giga becquerel (GBQq)
degree (angle) 1.745329 x E -2 radian (rad)

degree Fahrenheit tK = (tg + 459.67)/1.8 degree kelvin (K)

electron volt 1.60219 x E -19 joule (J)

erg 1.000000 x E -7 joule (J)

erg/second 1.000000 x E -7 watt (W)

foot 3.048000 x E -1 meter (m)

foot-pound-force 1.355818 joule (J)

gallon (U.S. liquid) 3785412 x E -3 meter3(m3)

inch 2.540000 x E -2 meter (m)

jerk 1.000000 x E +9 joule (I)

Joule/kilogram (J/kg) (radiation dose absorbed) 1.000000 Gray (Gy)

kilotons 4.183 terajoules

kip (1000 1bf) 4.448222 x E +3 newton (N)

kip/inch? (ksi) 6.894757 x E +3 kilo pascal (kPa)

ktap 1.000000 x E +2 newton-second/m? (N-s/m2)
micron 1.000000 x E -6 meter (m)

mil 2.540000 x E -5 meter (m)

mile (international) 1.609344 x E +3 meter (m)

ounce 2.834952 x E -2 kilogram (kg)

pound-force (Ibs avoirdupois) 4.448222 newton (N)

pound-force inch
pound-force/inch

pound-force/foot2

pound-force/inch2 {psi)
pound-mass (Ibm avoirdupois)

pound—mass-foot2 (moment of inertia)
pound-mass/foot3

1.129848 x E -1
1.751268 x E +2
4.788026 x E -2

6.894757

4.535924 x E -1
4214011 xE -2

1.601846 x E +1

newton-meter (N-m)
newton/meter (N/m)
kilo pascal (kPa)

kilo pascal (kPa)
kilogram (kg)
kilogram-meter? (kg-mz)
kilogram/meter3(kg/m3)

rad (radiation dose absorbed) 1.000000 x E -2 **QGray(Gy)

roentgen 2.579760 x E -4 coulomb/kilogram (C/kg)
shake 1.000000 x E -8 second(s)

slug 1.459390 x E +1 kilogram (kg)

torr (mm Hg, 0° C) 1.333220x E -1 kilo pascal (kPa)

*The becquerel (Bq) is the SI unit of radioactivity; 1 Bq = 1 event/s.

**The Gray (Gy) is the SI unit of absorbed radiation.
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SECTION 1
INTRODUCTION

The high fidelity simulation COMLNK [Bogusch, 1989, 1990, 1996; Bogusch
and Michelet, 1993] is intended to facilitate the design, development, specification,
testing, and evaluation of digital communications links operating in fading channels.
For example, COMLNK allows the link designer to quickly evaluate the relative merits
of various signal processing algorithms or tracking loop parameters or many of the
myriad design details in modern digital modems. Accuracy is very important because
selection of the best algorithm for a particular function may be based on slight differ-
ences, sometimes a fraction of a decibel, in performance.

During the hardware development process, implementation choices can be evalu-
ated with COMLNK. For example, the difference in the performance of a Viterbi de-
coder using three or four bits of soft decision amplitude information can be measured
with the code. Another issue that faces the hardware designer is the following: Given
an input signal-to-noise ratio, does the design meet its performance requirements? Here
a fraction of a decibel can make the difference between a design that is acceptable and
one that requires further refinement.

The development of link specifications is another area where accuracy is criti-
cally important. Real hardware has real implementation losses. If such losses are inac-
curately specified, two things can happen and both can be bad. If the specified loss is
too large, a sloppy design that wastes precious power resources may result. If the
specified loss is too small, the design may either be more expensive than necessary or
simply may not be possible with existing technology.

Hardware testing is yet another application of simulation results where accuracy
is very important. When wiring together a complex communications system and test
equipment to measure link performance in fading channels, any number of things can
be wrong. Thus the prudent tester often will use simulation results as the “truth”
against which the efficacy of test results is determined. If the “truth” is in error, then
good test results can be rejected because they vary too much from expected results.

Eventually, a good hardware test engineer will get valid results whether or not
he or she has accurate predictions of performance. However, there are inherent limita-
tions of such tests because of real limitations in hardware channel simulators. Gener-
ally, one cannot test a communications link over all possible variations in the fading




channel. When such limitations occur, the comparison of hardware test results and
simulation results for the channels that can be tested is a practical method of validating
the simulation, provided the two results agree to within an acceptable margin.

Once validated against test data (or theoretical performance curves when test
data are not available), the simulation can then be used confidently to measure link per-
formance under channel] conditions that cannot be tested or to evaluate the performance
of similar communications links. Indeed, a simulation may be the only way to under-
stand and mitigate link disruptions that occur infrequently in the actual operating envi-
ronment. The key to using the simulation with confidence for any of these purposes is
accuracy.

The COMLNK code has been designed from the beginning to do two things well.
First, it is designed to be as accurate as possible, and second, it is designed to be as fast
as possible. Sometimes these two goals conflict, particularly in the simulation of the
fading channel. An example is the number of delay samples that defines the tap spacing
in a frequency selective fading channel simulator. COMLNK uses two delay samples
per modulation period. Our validation results show that this choice may be too coarse
for some applications, and the number may become a user input in the future. How-
ever, it may not be desirable to increase the number of delay samples in all cases. For
exaniple, hardware channel simulators also employ sampled channels, and one would
like the software and hardware to exhibit similar fidelity.

The purpose of this work is to assess the accuracy of COMLNK in performing
the most basic of communications link functions—demodulating the received signal. It
is in the simulation of the demodulator that additive white Gaussian noise (AWGN), the
transmitted modulation, and the fading channel come together when constructing the
received signal.

To assess the accuracy of COMLNK we found that simple “textbook” error rate
curves for demodulation performance are inadequate because, in general, they do not
include fast fading or frequency selective fading effects nor do they include the effects
of carrier tracking. Furthermore, such curves do not address channel delay sampling,
and channel sampling is the primary source of the differences we observed between
theoretical and simulated demodulation performance.

Thus much of the theoretical work on demodulation performance in fading
channels reported here is new and is not yet in the literature. A notable exception is the
work of Bello and Nelin [1962a, 1962b, 1963], now over 35 years old, which develops




the performance of differentially coherent phase-shift keying (DPSK) and binary fre-
quency-shift keying (BFSK) in fast or frequency selective fading channels. However
their results do not include the fading spectra that represent the transionospheric
propagation channel and do not include delay sampling effects.

The new analytic delay error and demodulation error rate results in this report,
that to our knowledge have not yet been reported in the literature with the exception of
ideal delay tracking results [Dana, Bogusch, and Milner, 1995], include:

e Ideal direct sequence spread spectrum (DS/SS) delay offset and code correlator
loss in continuous and sampled frequency selective fading

o Ideal delay offset for DPSK without an underlying spread spectrum code in fre-
quency selective fading

e DPSK demodulation error rate in fast, frequency selective fading with sampled
and continuous channels

o DPSK demodulation error rates in slow fading with two- and three-channel di-
versity combining

e M-ary FSK demodulation error rates in fast, transionospheric fading excluding
tone filter cross correlation

o Ideal delay offset for M-ary FSK with and without hopping in frequency selective
fading

e BFSK demodulation error rates with hopping in slow, frequency selective fading
with sampled and continuous channels and ideal delay offset

e BFSK demodulation error rates with hopping in fast, frequency selective fading
with sampled and continuous channels

e BFSK demodulation error rates without hopping in slow, frequency selective
fading with sampled and continuous channels

These theoretical delay offsets and demodulation error rates are discussed in the ap-
pendices to this report. Our goal in outlining the often tedious mathematics is to allow
. the interested reader to follow the theoretical developments and use the results for
simulation validation or for use in analytic models of communication links.

While the initial purpose of developing these analytic results was COMLNK
validation, in the process we learned a great deal about the simulation of fading chan-




nels that we probably would not have known without the theory together with the
simulation. Much of this understanding is related to the effects of delay sampling of the
channel. But we also investigated the effects of temporal sampling of the channel and
verified that time sampling in COMLNK accurately represents the effects of the chan-
nel Doppler frequency spectrum on the demodulation process.

A natural question is why not extend this work to include other processes within
a communications link. One part of the answer is that many of the other processes are
highly nonlinear and not amenable to analytic solution. The other reason is that it is not
really necessary because most of the other processes are emulated, rather than simu-
lated, using the same algorithms as in a microprocessor-based receiver.

An example of a complex link, taken from a COMLNK display, is shown in
Figure 1-1. This link includes cyclic redundancy check (CRC) error detection encod-
ing, convolutional encoding for error correction, a convolutional interleaver (IL), bi-
nary to M-ary conversion, a chip repeater, synchronization multiplexer, frequency
hopping, and frequency-shift keying (FH/FSK) modulation at the data source. There is
then an uplink channel to a processing satellite, for example, where the received signal
1s demodulated and converted back to bits so it can be combined with data from other
satellite users. Then the satellite data are converted back to M-ary and again FH/FSK
modulated and sent over a downlink channel to the receiver. Here all the signal proc-
essing functions performed at the transmitter are undone to form the received message.
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Figure 1-1. Example complex communications system simulated with COMLNK.




In a modern digital communications system the only analog parts are the modu-
lator, the channel, and the demodulator. Indeed, even the demodulation process is often
performed using digital samples out of an analog-to-digital (A/D) converter. Thus the
only simulation in COMLNK is in the generation of the A/D samples. After this point,
the receiver is digital and COMLNK is an emulation of the digital signal processing
that occurs. Validation of the digital signal processing within COMLNK is done by
comparing bit by bit and sample by sample the processing with the digital signal proc-
essing algorithms within actual receivers.

Most of the signal processing is highly nonlinear and defies analytic analysis that
is possible for demodulation. Whenever possible, results from COMLNK are compared

with analytic theory, results from other simulations, and test results. This is an ongoing
validation effort.

Although in this report we consider only the output of a demodulator after a
communications signal has propagated once through a fading channel, we believe that
this is sufficient to validate the modulation, demodulation, channel model, and AWGN
generation processes within COMLNK. Indeed, a good comparison of the simulated
demodulation error rate with theory validates a number of other related processes, as
indicated in Figure 1-2 which shows a FH/FSK demodulator in more detail. This block
diagram shows the tracking loops necessary for data demodulation, including automatic
gain control (AGC), delay-lock loop (DLL), and automatic frequency control (AFC).

A major result of this work is that COMLNK does indeed accurately demodulate
DPSK and M-ary FSK signals in fast, frequency selective fading channels. The differ-
ences we observe between ideal performance, as defined by the analytic results, and
COMLNK results are the result of channel model sampling. When we then compare
COMLNK results with ideal performance that includes sampling, we get excellent
agreement.

To demonstrate the validation process and to provide the interested reader with
useful theoretical results, this report is organized as follows. First, we outline in Sec-
tion 2 the time and frequency selective fading channel model used in COMLNK and in
our theoretical developments. This model is based on official Defense Special Weapons
Agency (DSWA) transionospheric channel models with the turbulent approximation to
separate time and frequency selective fading effects.
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In Sections 3 and 4 we compare COMLNK delay tracking and demodulation er-
ror rate results, respectively, with theory for all of cases listed above. These two
chapters contain all the COMLNK validation results in this report. The rest is analysis.

Theoretical developments are reported in appendices for interested readers. Ap-
pendix A, included primarily for completeness, contains a brief discussion of coherent
PSK demodulation. This modulation format generally performs poorly in fading chan-
nels and is a poor choice for analytic validation because its performance is dependent
on that of a highly nonlinear phase-lock loop (PLL). The PLL cannot be treated ana-
lytically, although it is readily handled in a simulation.

In Appendix B we discuss DPSK performance with an underlying pseudonoise

(PN) code in fast, frequency selective fading channels. This appendix is a summary of
work reported earlier [Dana, 1995¢], and includes delay offset and code correlator loss
for continuous and sampled channel impulse response functions (CIRFs). The perform-
ance of DPSK without an underlying PN code in fast, frequency selective fading with
sampled and continuous CIRFs is developed in Appendix C. This work, to our know]-
edge, is new. A short derivation of the basic demodulation error rate formula for
DPSK and BFSK is given in Appendix D. A new calculation of the DPSK demodulation
error rate with diversity combining in slow fading channels is reported in Appendix E.

Approximate (upper bound) expressions for the demodulation performance of
M-ary FSK in fast, flat Rayleigh fading are derived in Appendix F. Because M-ary
FSK demodulators are often implemented using discrete Fourier transforms (DFTs),
the effects of time sampling are also considered. The question investigated here is
whether or not the sampling is sufficient to capture the full Doppler frequency spec-
trum of the fading channel and what effect, if any, time sampling has on demodulation
performance relative to that possible with analog demodulation (i.e., using continuous
Fourier transforms). The final two Appendices, G and H, cover BFSK performance,
with and without frequency hopping, respectively, in frequency selective fading. These
calculations are sufficiently complex that we have not attempted to extend them to
M-ary FSK, although such extensions are possible in principle. To our knowledge, all
of these FSK results are essentially new and have not been published elsewhere.




SECTION 2
THE FADING RADIO CHANNEL

Scintillation of radio frequency signals propagating through the ionosphere or
the troposphere arises from random variations in the index of refraction. Tropospheric
index of refraction variations result from atmospheric turbulence, rain, or dust. Iono-
spheric index of refraction variations result from ionization irregularities produced by
plasma instabilities, which cause the ionization to form long filaments, or striations,
aligned with the earth’s magnetic field. One can visualize such striations as long sheets
or rods of relatively high electron density embedded in a background of lower electron
density, as shown schematically in Figure 2-1 [Bogusch, et al., 1981].

Consider for a moment an unmodulated wave traversing a region of random
fluctuations in the index of refraction. The wave first suffers random phase perturba-
tions due to the variations in phase velocity. As the wave propagates farther, diffractive
effects introduce fluctuations in amplitude as well as phase, resulting in undesired com-
plex modulation of the carrier.

In the ionosphere, the index of refraction and phase velocity depend on the fre-
quency of the propagating electromagnetic wave. A communications or radar signal
encompasses a spectrum of frequencies because of the transmitted modulation. The fre-
quency-dependent index of refraction causes each spectral component of the signal to
experience different phase and amplitude scintillation when propagating along a tran-
sionospheric path. If the resulting differences are minor (i.e., if the scintillations are
highly correlated across the signal bandwidth), the propagation channel] is said to be
non-frequency selective, or flat fading. When significant statistical decorrelation is ob-
served across the signal bandwidth, the channel is said to be frequency selective.

Radio wave propagation through regions of index of refraction fluctuations has
been studied for many years by numerous researchers. An extensive body of data has
been accumulated from a variety of field experiments. Recordings of signal amplitude
and phase scintillation have been made in the natural equatorial and polar regions of
the earth’s ionosphere [e.g., Fremouw, et al., 1978], and in experiments involving the
release of barium chemical compounds at high altitudes [e.g., Davis, et al., 1974; Wol-
cott, et al., 1978]. The various data have been subjected to considerable analysis to de-
termine the statistical characteristics of scintillation [e.g., Dana, 1992b; De Raad and
Grover, 1990; Fremouw, Livingston, and Miller, 1980; Whitney, et al., 1972].




Figure 2-1. Propagation through a striated ionosphere.

The resulting distributions of signal amplitude and phase are described by the
first-order scintillation statistics. Temporal, spatial, and spectral correlation properties
are described by the second-order statistics.

2.1 FLAT FADING CHANNELS.

As noted above, when the random fluctuations of each spectral component of the
received signal exhibit essentially identical behavior in time, scintillation is said to be
flat or non-selective over the signal bandwidth. Note that, in this context, the term non-
selective refers to frequency selectivity only. Fading channels always exhibit time
variation, which is sometimes called time selectivity.

Flat fading is often a good approximation in cases where the signal modulation
bandwidth is small, or where index of refraction fluctuations are weak. A monochro-
matic (CW) signal is a clear example of a situation where the channel is flat or non-
selective. In flat fading conditions, the effect of the propagation channel can be repre-
sented mathematically by a complex multiplicative factor on the transmitted signal.
Thus, if the real transmitted signal is written as




Sr(t)=Re {m(r) exp (jcoct)}

where m(t) is the transmitted modulation, ®, is the carrier angular frequency, and
Re(-) denotes the real part of the argument, then the received signal in a flat fading
channel can be written as

Sg(t) = rRe{a(t)m(r)exp[j6() + joo 1]} (2.1)

where 7 is the nominal received signal amplitude (i.e., the received signal amplitude in
the absence of fading), a(z) is the time-varying amplitude modulation imposed by the
propagation channel, and 6(r) is the corresponding channel-imposed phase modulation.
The in-phase (I) and quadrature-phase (Q) components of the channel modulation are
a(t)cos[0(2)] and a(r)sin[0(r)], respectively. The first-order statistics of the fading
channel therefore can be defined either in terms of the amplitude and phase fluctua-
tions, or in terms of the in-phase and quadrature components.

2.1.1 First-Order Statistics.

Statistical analysis of experimental and theoretical results, encompassing many
measurements and calculations, reveal than when scintillation is intense or fully devel-
oped, the random signal amplitude is Rayleigh distributed, and the random channel
phase is uniformly distributed over 2x radians. Thus in a Rayleigh fading channel, the
phase function 6 is uniformly distributed over the interval [0, 2], and the amplitude
function a is described by the Rayleigh probability density function:

2
a a
fRay(a)='0—zexp["—2—8_2_:| az0 ,

where G2 is the variance of each of the in-phase and quadrature-phase components of
the scattered signal voltage. In terms of received signal power § = a?, the value of o2
is equal to one-half the mean power, and the Rayleigh distribution becomes

1
Fray(S) = SexP [-5/S,] S$=0,
0
where S; = 2672 is the mean fading signal power. [The quantity S, is often set to unity
so that amplitude r in Equation (2.1) is determined by the signal-to-noise ratio of the
received signal.] The cumulative distribution of the fading signal power S in a Rayleigh
fading channel is then

10




S .
Fray(S) = [ fray(8)dS’ =1-exp[-5/S,] 520 .
0

This cumulative distribution is plotted in Figure 2-2. It is seen that in a Rayleigh
fading channel, the received signal exhibits fades below 10 dB about 10 percent of the

time, below 20 dB one percent of the time, and below 30 dB one-tenth of one percent
on the time.

This strong scattering limit can also be obtained by applying the central limit
theorem to the superposition of many randomly scattered waves. The [ and Q0 compo-
nents of the resulting electric field are found to be zero-mean Gaussian random vari-
ables, statistically independent, with equal variances of one-half the mean signal power.
These conditions are both necessary and sufficient for Rayleigh statistics, which de-
scribe the envelope of a narrowband Gaussian noise process. Thus, when scintillation
has saturated at a Rayleigh fading condition, the first-order signal statistics are the
same as those for narrowband Gaussian noise.

‘ll'lllllllllﬂllllllll

10°

T 11 |H|II

107

T lllllll

1 lI|IlII|

102

T 7T l|ll”'
11 Illlll[

103

Cumulative Distribution of Rayleigh Fading

10.4 llllllll|Jl!l!l)lIl|l)J;4l;

-40 -30 -20 -10 0 10
Relative Fading Power, /S, (dB)

Figure 2-2. Cumulative distribution of received signal power in Rayleigh fading
channels.
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One measure of the intensity of scintillation is the scintillation index, S,, which is
the normalized standard deviation of signal power. In terms of the signal voltage a or
the fading power S, the scintillation index is defined as

S4{<a4>_<§2>2}5=[<sz>;s3} |
(a?) %

where angular brackets denote ensemble averages.

N[ —

In intense scintillation conditions the value of S, saturates at unity, which is a
necessary (but not sufficient) condition for Rayleigh statistics'. The value of S, is zero
in the case of no fading. Values of S, between zero and unity correspond to relatively
weak scattering conditions where signal fading is less severe than Rayleigh. Values of
S, somewhat greater than unity are occasionally measured; such values are associated
with focusing effects that often accompany multipath conditions.

When the scintillation is not intense or fully developed, the first-order statistics
are not neatly described by a single mathematical expression, as is the case for Rayleigh
fading. However, two distributions that describe the amplitude fading statistics of non-
Rayleigh fading are in common use. These are the Nakagami-m [Nakagami, 1960] and
Rician [Rice, 1948] distributions.

There is some evidence that the Rician distribution represents a reasonable
worst-case distribution for non-Rayleigh fading [De Raad and Grover, 1990; Dana,
1992b]. This distribution has the added advantage of being as easily implemented in a
channel model as is Rayleigh fading since a Rician distributed random process can be
obtained by adding a constant component to a Rayleigh distributed process.

The Rician probability density function for the fading power S is

1 SIS, +R 2./RS/ S
(§)=—— exp| —2L20 ]1 [ 0} , 2.2

where [,(-) is the modified Bessel function, and R is the “Rician index,” which is de-
fined as

! Sufficient conditions for Rayleigh fading are that the in-phase and quadrature-phase components of the
signal be independent, zero-mean, Gaussian random processes with equal variance.
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R=:1-82 . (2.2b)

The cumulative distribution of the Rician fading power is

2R 28/,
FRi(:e(S)zl_Ql:’\/’\T/—j_?, ’\/'1—_—_?}):! s

where Marcum’s Q function [Marcum, 1960] is

(=<

Q(a,b)= [xexp[-L(x2 + 4?)| 1o (ax)dx .
b
The Rician cumulative distribution is plotted in Figure 2-3 for a few values of
the scintillation index. The Rician distribution is Rayleigh when S, is unity and R is
zero. Note that RS, is the mean power in the constant component of S, and (1 R) S is
the mean power of the fluctuating part of S.

2.1.2 Second-Order Statistics.

Relative motion between the propagation path and scattering region, due to
movement of the path or scattering region or both, causes the signal propagation chan-
nel to vary with time. The resulting time-varying amplitude and phase modulation im-
posed by the channel is sometimes referred to as time-selective fading. The rate at
which the signal amplitude and phase vary with time can range from very slow to quite
fast. The fading rate is a function of the relative path velocity, intensity of the scatter-
ing irregularity structure, and wave frequency. A precise measure of the fading rate is
provided by the signal decorrelation time, which is a parameter involved in the second-
order statistics.

The signal decorrelation time is denoted by T, and is defined as the 1/e point on
the time autocorrelation function of the fluctuating part of complex channel modula-
tion. Writing the complex modulation as

E(t) = Ey +a(t)exp[0()] ,

where Ej is a constant component (Ej 1s zero for Rayleigh fading), the autocovariance
function® is defined by

? The time autocovariance function is equal to the time autocorrelation function for Rayleigh fading where
the constant component Ey of E(f) is zero.
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C=(E0-E] [Ec+D-E])

where the asterisk denotes complex conjugation. The autocorrelation function of the
fluctuating part of E(?) is

p(1) = C(1)/CO0) ,
and the decorrelation time is defined as p(ty)=1/e.

Because small values of 7, correspond to fast fading while large values corre-
spond to slow fading, the decorrelation time is an inverse measure of the fading rate.
Thus the fading rate can be defined as 1/1,. Another measure of fading rate that is in
use, particularly in the HF community, is the Doppler spread. In this context, Doppler
spread refers to the spectral spreading of the signal resulting from the time variation of
the undesired amplitude and phase modulation imposed by the propagation channel.
The more rapid the scintillation, the greater the Doppler spread. Thus, small values of
Ty correspond to large values of Doppler spread, and conversely. Doppler spread is de-
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fined by the bandwidth of the signal scintillation Doppler frequency power spectrum
Sp(®wp), which is the Fourier transform of the autocorrelation function:

Sp(@p)= [p(r)e " dr .

The Doppler radian frequency o, is measured relative to the signal carrier frequency.

Measurements of the fading power spectrum have been made with experimental
data from satellite transmissions and with signal realizations from multiple phase
screen (MPS) calculations [Knepp, 1983a]. The spectrum has also been investigated
analytically. In slow fading conditions the spectrum is generally found to exhibit a
power-law dependence on Doppler frequency, with an f~* dependence being repre-
sentative of the observed spectra. In fast fading conditions the fall-off with Doppler
frequency is more rapid, limiting to a Gaussian spectrum when the fading is quite fast.

A Gaussian spectrum, which is often employed in analytical investigations be-
cause of its mathematical tractability, is

Sp(wp) =1, exp[—%(to coD)z] . (Gaussian Spectrum) (2.3)

The Fourier transform of a Gaussian function retains the Gaussian form, and the auto-
correlation function corresponding to Equation 2.2 is found to be
2
p(T) =exp [- 1—2} . (Gaussian Spectrum)
0
An f™* form for the fading power spectrum is particularly convenient for chan-
nel simulation because it can be synthesized using two-pole filters, which are easily im-
plemented in hardware or software. When the two-pole filters are formed using pairs
of cascaded single-pole RC filters, the f = spectrum is given by

41 /04
[1'*'('50 C‘)D/0‘4)2]2

where T,/0, is the time constant of each of the single-pole RC filters. The value of
o, is obtained from the autocorrelation function, given by the Fourier transform of
Equation (2.4):

Sp(@p)= . (f™* Spectrum) (2.4)

p(T) = (1 + ai—lt—]j exp (——9&%) . (f* Spectrum)

0 0
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Upon setting p(ty) =1/e and solving the resulting equation numerically, one obtains
o, =2.146193- ..

A channel with a Gaussian Doppler frequency spectrum also can be synthesized
approximately using multiple-pole filters with suitable weights. However, Dana [1994]
has shown that temporal statistics (i.e., the mean fade duration and separation) of an
f -6 spectrum are a close approximation to those of the Gaussian form. The f =S form
can be synthesized using three-pole filters, and when the three-pole filters are formed
using three cascaded single-pole RC filters the resulting f 6 spectrum is

1674/046
[H(To (01)/0‘6)2]3

where again T/ is the time constant of each of the single-pole RC filters. The value
of 0. is obtained from the autocorrelation function:

2
p(’t)=|:1+a611|+§(0‘6h|] }exp[——q—g—lﬂ) . (f'(’Spectrum)

Sp(@wp)= ., (f~% Spectrum) (2.5)

To To 0

Upon setting p(ty) =1/e and solving the resulting equation numerically, one obtains
O = 2.904630---. The use of multiple, uncorrelated f 5 flat fading realizations to
construct a realization of the frequency selective channel impulse response function is
described later in the subsection on channel modeling.

The f ~* and f -6 spectra given by Equations (2.4) and (2.5) fall off less rapidly
at high Doppler frequencies than does the Gaussian spectrum given by Equation (2.3).
These three Doppler spectra are compared in Figure 2-4. The greater high frequency
content of random amplitude and phase modulation makes the f 4 spectrum a more
stressing case for most communications systems. Demodulation and tracking functions
tend to degrade more rapidly in the presence of “noisier” signal fluctuations corre-
sponding to this power-law spectrum. The fact that the f ~ spectrum represents a rea-
sonable worst case, coupled with its ease of implementation in hardware and software,
has made it the standard for use in flat fading channel simulators. As can be seen from
the figure, the f ¢ spectrum lies between the Gaussian and f ~ spectra.
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Figure 2-4. Comparison of Gaussian, f~® and f™ fading signal power spectra.

2.2 FREQUENCY SELECTIVE CHANNELS.

When the signal modulation bandwidth is large and the propagation channel is
highly disturbed, frequency selective fading becomes important. No longer can the ef-
fect of the channel be represented by a multiplicative factor on the transmitted signal.
Instead, the channel is represented by a time-varying linear filter, and the received sig-
nal is given by the convolution of the transmitted signal and the channel impulse re-
sponse function:

Sg(t)=Re[u(t)exp(-jo,z)]
u(t)=r[m(t-t)h(t,0)dr , (2.6)
0

where r is the amplitude of the received signal in the absence of propagation effects.
The quantity u(f) is the complex envelope of the received signal, and A(z,7) is the time-
varying impulse response function of the propagation channel. As before, m(r) is the
transmitted modulation, and ®, is the carrier angular frequency.
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The primary measure of the level of frequency selectivity is the frequency selec-
tive bandwidth, denoted by f;. This is another parameter involved in the second-order
signal statistics. The relationship between f; and the standard deviation of signal time
delay jitter o arising from angular scattering is

fo :

2TC

The value of f; is commensurate with the maximum modulation rate that the
channel will support with little intersymbol interference. Small values of f; therefore
correspond to severe frequency selectivity, while large values are associated with flat
fading or undisturbed channels. Depending on the level of disturbance in the propaga-
tion medium, the frequency selective bandwidth can range from very large to quite
small values.

Another measure of frequency selectivity that is in common use is the multipath
delay spread of the signal. The delay spread is related to the angular scatter-induced
time delay jitter and hence is inversely related to the frequency selective bandwidth.
Thus small values of f;, (severe frequency selectivity) correspond to large values of
multipath delay spread, and conversely.

Determination of the statistical properties of a frequency selective propagation
channel encompasses the relationship between the statistics of the scattering region and
those of the received signal. Significant progress has been made in recent years in ana-
lytically establishing this link between environmental descriptions and signal statistics
[Knepp, 1983b; Dana, 1986; Dana, 1991].

As shown in Equation (2.6), the frequency selective propagation channel is con-
veniently represented in terms of the time-varying channel impulse response function
h(t,7). An equivalent representation may be cast in terms of the Fourier dual, the time-
varying channel transfer function H(z,®). The former is the channel response at time ¢
to an impulse transmitted at ¢ — T. The latter is the channel response to a sinusoidal ex-
citation at frequency .

Propagation theory can be used to compute specific realizations of the channel
impulse response function, but these calculations must be performed numerically. What
can be obtained analytically is the statistical description of the channel response. This
relationship is formulated in terms of the generalized power spectral density (GPSD)
of the received signal.
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The derivation of the GPSD starts with Maxwell’s equations, from which the
parabolic wave equation is derived. A necessary condition for the parabolic wave
equation to be valid is that the phase perturbation over a distance comparable to a
wavelength be small relative to one radian. A sufficient condition is that the angular
deviation of the wave relative to the principal propagation path be small relative to one
radian. These conditions are generally satisfied whenever attenuation of the propagat-
ing wave is not significant in the scattering medium.

The parabolic wave equation can be solved to give the received electric field for
a specific distribution of the index of refraction. The difficulty lies in the fact that the
index of refraction is a random process, so the received electric field is also a random
process. The parabolic wave equation is therefore used to derive an equation for the
two-time, two-frequency, two-position mutual coherence function. The solution of the
differential equation for the mutual coherence function provides a description of the
second-order statistics of the received electric field. The Fourier transform of the mu-
tual coherence function is the GPSD of the received signal. Two of the parameters in-

volved in the GPSD are the decorrelation time, T, and the frequency selective band-
Width, fO'

The GPSD has a particularly simple form in the limit that spatial and temporal
fluctuations of the scintillation are decoupled (the so called turbulent model). In this
limit, the GPSD can be written as product of the Doppler frequency power spectrum
Sp(®p) and the power impulse response function G(1):

S(®@p,1)=Sp(@p)G(T) e

where 7 is the time delay. In the limit that the scattering is isotropic about the propaga-
tion direction, the power impulse response function is exponential:

- 20
G(T) — ('Ocoh exp< (OCOhT) T , (28)
0 <0
where the coherence bandwidth ®,_,, is related to f;:
Ocop =21 fo -

The quantity G(t)d7 is the mean signal power arriving in the delay interval T to T+ dt
relative to the nominal propagation time.
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The Fourier transform of the power impulse response function is the two-
frequency mutual coherence function, which describes the correlation in the fading at
two frequencies in the signal bandwidth:

* < . 1
T(w)=(H (,0)H{I,0,))=|G1e /" dt= ——
(B o HG0) { 1+ (81 )
where o is the difference between two radian frequencies (® = ®; — ®,), and
Af =21 . As indicated in the expression for I'(®), this function is also equal to the
expectation of the channel transfer function at two frequencies.

The fact that I'(®) is complex indicates that there 1s correlation between the real
part of the channel impulse response function at one frequency and the imaginary part
at another frequency. As a consequence, for example, the correlation in the outputs of
the two binary frequency-shift keying (BFSK) tone filters in frequency selective fading
is complex. A more interesting observation is that the magnitude of I'(w),

1
J1+(AF 1 £)?

varies as f, /Af for small values of the ratio. Thus the fading measured at one time on
two frequencies separated by f; or larger exhibits a higher degree of correlation than
does the fading on one frequency measured at two times separated by 1, or larger.

[T(@)|=

In conjunction with Rayleigh first order statistics, the GPSD provides a complete
statistical description of the frequency selective scattering channel. Given values of the
signal decorrelation time and frequency selective bandwidth, the GPSD can be used to
generate specific realizations of the channel impulse response function. The channel
impulse response function then enables specific realizations of the received signal to be
generated for uses in analysis and testing. The procedure for simulating the channel is
described in Dana [1991, 1994] and is summarized in Bogusch and Michelet {1993].

2.3 CHANNEL MODELING TECHNIQUES.

Design, testing and evaluation of digital communications and radar equipment in
fading channels are areas in which there is an increasing utilization of channel models
to simulate the effects of propagation disturbances. The design process is greatly fa-
cilitated and made quite precise by the use of software channel models in conjunction
with detailed computer simulations of the receivers. Once a design is selected, verifica-
tion that it has been properly translated into hardware relies heavily on hardware
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channel models that perturb transmitted signals either at RF or after downconversion
to IF. Channel models have been developed for both the flat fading channel and the
frequency selective fading channel, and these models have been implemented in soft-
ware and in hardware. This subsection summarizes two techniques that have proven
useful in modeling the fading radio channel.

2.3.1 Flat Fading Channels.

Simulation of flat fading channels is readily accomplished in either software or
hardware. The basis for a flat fading channel simulator is the fact that the effect of
non-selective scintillation is to impose a multiplicative complex modulation (amplitude
and phase) on the transmitted signal. In other words, the channel transfer function is
independent of frequency over the signal bandwidth, and the channel impulse response
function is a Dirac delta function in delay:

H(t,0) = a(t) e

, . (Flat Fading)
h(t,7) = a(t) e®? §(1)

With these relationships, it is readily seen that the convolution in Equation (2.6)
reduces to a multiplication of the transmitted signal times the complex modulation
a(®)e’®® which yields the expression for the received signal given in Equation (2.1).
When the transmitted data modulation is real, Equation (2.1) can be rewritten as

Sg(t) = a(t)m(t)cos[6(r)]cos(® ) — a(t) m()sin[0(¢)]sin (@ t) . (2.9)

Implicit in this representation is the usual assumption that both the data modulation and
the fading power spectra are narrowband with respect to the carrier frequency. Equa-
tion (2.9) can be rewritten in terms of two quadrature modulating waveforms:

Sp(®) = I(t)[m(t) cos(w,t)]+ Q) [m(t) cos (w2 + 7/ 2)] ,
where
I(t) = a(t) cos[0(1)]
Q) = a(t)sin[6(2)]

These equations show that the flat fading received signal can be generated by
passing the transmitted signal through a power splitter, shifting the phase of one of the
outputs by 90 degrees, and then passing the signal and its phase-shifted version through
two product modulators. The quadrature modulating waveforms, I(f) and Q(t), repre-
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sent the fading channel. These waveforms can have any statistical descriptions; hence
the simulator is not limited to any particular type of channel as long as it can be ade-
quately represented as narrowband and non-selective over the signal bandwidth.

One way of generating specific realizations of the quadrature modulating wave-
forms, applicable to Rayleigh or Rician fading channels, is to invoke the signal statisti-
cal approach. In this case the I and O waveforms are each represented by zero-mean
Gaussian random processes, statistically independent of each other, with equal vari-
ances. A specular or constant component is included for Rician channels. Given the
fading power spectrum, white Gaussian noise can be appropriately filtered to produce
the desired second-order statistics of the fluctuating component.

The f~* fading power spectrum defined in Equation (2.4) has become the stan-
dard for use in ionospheric flat fading simulators, because it represents a reasonable
worst case and is easily synthesized [Wittwer, 1980]. This spectrum can be realized by
passing white Gaussian noise through two cascaded single-pole RC lowpass filters in
each of the two quadrature channels. Figure 2-5 illustrates the functional configuration
of the resulting channel simulator. The relationship between the time constant of each
of the RC filters Tz and the scintillation decorrelation time Ty is Tz = Tg /0y [see
Eqn. (2.4)], and the relationship between the “Rician index” R and the scintillation in-
dex S, is given by Equation (2.2).

This flat fading channel simulator can be implemented in software or in analog
or digital hardware’. In a digital implementation, the two white Gaussian noise sources
are simply two independent sequences from a Gaussian random number generator.
Such sequences can be easily generated using uniformly distributed random numbers:

g =~-26%In(u;) cos(2mu,)
8> =+/-26° In(u;) sin (27 u,)

3 Care must be exercised in a hardware implementation to ensure that no measurable amount of unmodu-
lated signal inadvertently leaks through the output in Rayleigh fading. Because flares to nearly +10 dB
and fades to below ~30 dB relative to the mean signal level are common in Rayleigh fading channels,
the quadrature modulators must operate over at least a 40-dB dynamic range, and there should be at
least 50-dB of isolation between the input and output in Rayleigh fading (R = 0). If some unmodulated
signal leaks through, the resulting specular component yields Rician fading, which may be significantly
less stressing than Rayleigh.
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Figure 2-5. Flat fading channel simulator.

where #; and u, are random numbers drawn from a uniform distribution over the in-

terval (0,1), and g; and g, are independent, zero-mean, Gaussian random numbers,
each with variance o°.

Each single-pole RC filter can be implemented digitally using the recursive rela-
tion '

Er=al_ +bl, (2.10)

where &, is the current output of the filter, {, is the current input, and k is the sam-
pling index. The quantities a and b are filter coefficients, where a is determined by the
filter time constant, and b is determined by the filter gain. When the filter gain is set to
unity, the values of a and b are given by [Bogusch, 1989]

a=exp(-0, At/ Tp)
1
[(1-a2)3J4 |
b=|————
1+a

where At is the sampling time interval. Note that, as in any digital filter implementa-
tion, the sampling rate must be rapid enough to minimize spectral aliasing. Because of
the stochastic nature of the fading channel, there is no precise definition of the required
sampling rate. The sampling rate must be high enough to ensure that the portion of the
fading spectrum that will be aliased contains an insignificant fraction of the total
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power. Experience has shown that choosing Ar<1,/10 is usually sufficient. To accu-
rately represent the statistics of the duration of fades to -30 dB or so, sampling inter-
vals Ar<1, /40 are required [Dana, 1982; Dana, 1993].

If the filter coefficients are held constant, the statistics of the flat fading channel
will be stationary. On occasion one may wish to simulate a non-stationary channel. This
can be done by changing the filter coefficients sufficiently slowly that the channel is
quasi-stationary insofar as the sampling process is concemned. Thus a channel whose
statistical properties change slowly compared to the fading rate can be readily simu-
lated by variation of filter coefficients in the channel simulator [Dana, 1994].

2.3.2 Frequency Selective Fading Channels.

Simulation of frequency selective channels is straightforward, albeit more com-
plicated than flat fading channel simulation. Two methods of implementing frequency
selective channel simulators are in use. These are the Fourier synthesis method (fre-
quency domain) and the convolution synthesis method (time domain). Up to now, the
choice between the two methods has been largely dictated by the selection of software
or hardware implementation. The Fourier synthesis method has been extensively ap-
plied in previous software channel simulations. The convolution synthesis method is
used extensively in hardware channel simulators. However, convolution synthesis has
also been implemented in software (e.g., COMLNK), and with modern digital signal
processing technology Fourier synthesis can be implemented in hardware.

The basis for the Fourier synthesis technique is provided by Equation (2.6) with
the convolution rewritten in terms of the signal spectrum and channel transfer func-
tion:

Sp(t)=Re[u(r)e’*']
= Re[u(r)]cos(w 1) — Im[u(r)]sin(w ) , (2.11)

u(t) = — [ M(w)H(t,0)e’ dw
21 -,

where M(w) is the Fourier transform of the transmitted modulation waveform m(t).

Once values of the channel transfer function H(z,®) have been computed at a set
of discrete frequencies within the signal bandwidth, the complex envelope u(¢) is com-
puted from the integral in Equation (2.11) using a discrete Fourier transform. The ex-
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pression for the received signal in this equation shows that Sy(#) can be generated us-
ing the same type of quadrature modulator as shown in Figure 2-5, except that here the
I and Q modulating waveforms are given by Re[u(r)] and Im[u(?)], respectively.

The convolution synthesis method of simulating a frequency selective channel is
the time domain dual of the Fourier synthesis method. The convolution integral in
Equation (2.6) is applied directly here. Thus both methods of synthesizing a frequency
selective signal require an integration to be performed at each time that the signal is to
be sampled. The Fourier synthesis method implements the integration (Eqn. 2.11) us-
ing a discrete Fourier transform. The convolution synthesis method implements the
integration (Eqn. 2.6) using a transversal filter. Perhaps the primary difference is that
in the convolution synthesis method the transmitted modulation waveform m(?) is input
directly rather than in spectral form. This is often convenient in hardware and soft-

ware implementations of the channel simulator, and is the reason for using convolution
synthesis in COMLNK.

A discrete version of the convolution integral (Eqn. 2.6), suitable for imple-
mentation in a tapped delay line transversal filter, is given by
N1
u(t)= Y, m(t—iAT)h(t,iAT) AT (2.12)
i=0
where N is the number of taps on the delay line, and At is the delay spacing between
each tap. The complex tap weights A(z,iAT) AT are given by the sampled values of the
channel impulse response function at delays iAt. Figure 2-6 illustrates the functional
implementation of a tapped delay line frequency selective channel simulator. This con-
figuration is implemented in hardware in the Defense Special Weapons Agency Nuclear
Effects Link Simulator (NELS II) [Hsiung, 1997], which operates at 700 MHz interme-
diate frequency (IF) and employs 48 taps on a coaxial tapped delay line. The tapped
delay line configuration is also implemented in software in COMLNK. The number of
taps used in COMLNK depends on the ratio of signal bandwidth to the channel fre-
quency selective bandwidth. |

With either the tapped delay line or the Fourier synthesis approach, samples of
the channel impulse response function (or its Fourier transform) must be generated to
simulate the frequency selective channel. This can be accomplished using either the
MPS method or the GPSD statistical method. The latter approach is convenient in the
limit of strong scattering (Rayleigh fading).
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Figure 2-6. Tapped delay line frequency selective channel simulator.

Under strong scattering conditions where the GPSD is valid, the real and imagi-
nary parts of the channel impulse response function are independent, zero-mean, Gaus-
sian random variables. Specific realizations of the impulse response function can be
generated using the CIRF [Wirttwer, 1980] or ACIRF [Dana, 1992a] codes. This ap-
proach enables properly correlated realizations of the received signal to be generated at
the outputs of multiple antennas with arbitrary aperture sizes, locations, and orienta-
tions with respect to the scattering directions.

A particularly simple special case arises when one considers the turbulent model
with isotropic scattering, a small antenna aperture (no spatial filtering), and diffractive
effects dominate. In this case, the GPSD takes the form given in Equation (2.7). Spe-
cific realizations of the channel impulse response function are generated by choosing a
discrete delay grid defined by

T, =iAt  (i=0,1,2, ---, N, -1) .

The total delay spread depends on the signal bandwidth, determined by the
modulation period 7, and the channel bandwidth, determined by the frequency selective
bandwidth f;. The delay spread is proportional to the reciprocal of the product f,T.
The delay spacing and the number of delay samples needed to represent the channel are
therefore functions of these parameters. If P, denotes the fraction of the total signal
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power that is to be contained in the delay grid, then integration of Equation (2.8) yields
the following expression for the number of delay taps, N.:

_m(-B)

N, =1
21 fo AT

(2.13)
The mean signal power at each tap is obtained by integrating Equation (2.8) over the
corresponding delay interval:
(i+1)AT
P = [G(t)dtr=exp[~iw,,AT]—exp[~(i+1) 0,01 . (2.14)
iAt
The sampled channel impulse response function for the i delay tap is then
h(t,iAT) At = (x; + jy;)[P (2.15)

where x; and y; are independent, zero-mean, Gaussian random numbers with equal
variance of 1/2. The complex Gaussian factor provides the Rayleigh fading time his-
tory for each delay sample. It is important to remember that the channel impulse re-
sponse function is delta-correlated in delay, and hence x; and y; are independent for
different values of i corresponding to different delay taps.

At times it is desirable to generate frequency selective realizations by time-
domain filtering of white Gaussian noise, whereupon it is again convenient to assume
that the Doppler spectrum can be represented by a power-law form with an even spec-
tral index. The f -5 Doppler spectrum produces realizations with temporal statistics
(i.e., mean fade duration and separation) that are close to that produced by a Gaussian
spectrum. Realizations of x; and y, with an f =8 spectrum can be generated directly in
the time domain using three cascaded RC filters [Dana, 1994].

Each single-pole RC filter can be implemented digitally using the recursive rela-
tion in Equation (2.10), where &;, is the current output of the filter, ;, is the current
input, i is the delay index and k is the sampling index. The filter coefficients a and b
for a unity gain filter are given by the expressions

a=exp(—0¢ At/ Ty)
1

b_[ (1-a?’ T
1+4a* +a*
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Separate filters with independent noise sources are used for each tap. The re-
sulting samples of the channel impulse response from Equation (2.15) are used directly
in the tapped delay line model of Equation (2.12). Alternatively, these samples can be
Fourier transformed to yield samples of the channel transfer function and then used in

the Fourier synthesis channel model, Equation (2.11).
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SECTION 3

EFFECT OF CHANNEL TAP SPACING ON DELAY TRACKING AND
AUTOMATIC GAIN CONTROL OPERATION

Generally, when developing analytic demodulation error rates, one assumes that
the receiver has negligible tracking errors so it is perfectly locked up on the signal in
time-of-arrival, frequency, and phase (if the signal is coherently demodulated). Thus
the integration period of the analog-to-digital (A/D) converter is assumed to be per-
fectly aligned with the modulation boundaries in the received signal, and the phase of
the signal is assumed to be constant or varying in a prescribed manner during the sam-
ple period. Given that the receiver has well-designed tracking loops, these may be rea-
sonable assumptions if the propagation channel is either slow, flat fading or non-
fading. In benign or flat fading propagation environments the ideal delay offset is zero
so the receiver sampling time is exactly aligned with the modulation period of the re-
ceived signal. However, in a frequency selective fading environment, where the signal
energy from a transmitted symbol may arrive at the receiver over several symbol pe-
riods, the ideal delay offset is not zero. To assume otherwise is to miss an essential part
of the problem. This is particularly true in spread spectrum receivers.

In this section we develop the ideal delay tracking offset and the resulting signal
loss of direct sequence (DS) and frequency hopped (FH) receivers operating in fre-
quency selective fading channels. This section is primarily concerned with the question
of channel model simulation accuracy, rather than COMLNK validation per se. The is-
sue addressed here is the effect of delay sample spacing in a tapped delay line repre-
sentation of the frequency selective channel.

For both link simulations and hardware channel simulators, the channel impulse
response function (CIRF) is necessarily generated with a finite number of delay sam-
ples, and the performance of a delay-lock loop (DLL) is found to be quite sensitive to
the coarseness of the sampling. Thus we calculate ideal delay offset and the resulting
signal loss for both continuous and sampled CIRFs' and then compare these results to
measurements from COMLNK and actual hardware tests.

' By “continuous CIRF” we mean that the delay variable is continuous and by “sampled CIRF” we
mean that the delay variable is defined only at discrete values. Because the CIRF is delta correlated in
delay, the function itself is “infinitely discontinuous” in either case.
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Measurement of the signal energy and tracking errors in COMLNK is done in
much the same way that such measurements could be made in an actual receiver’. To
measure signal energy we monitor the operation of the automatic gain control (AGC)
which produces a control value that is roughly proportional to the signal level. This
measurement is rough because the input to the AGC is signal plus noise, not just signal,
and because the AGC is a non-linear tracking loop with start-up transients and dynami-
cally varying output as the input signal plus noise fluctuates sample-by-sample. The
significance of this will become apparent when we compare average signal energy in
COMLNK with theoretical results. Time and frequency tracking errors are measured
by comparing the tracking loop output with the “truth.” An important advantage of a
simulation over actual hardware in this regard is that the truth is known, so tracking
errors can be measured accurately.

In Section 3.1 we summarize the calculation of the ideal delay offset in fre-
quency selective fading. The details of the theoretical calculations are presented in Ap-
pendices B and G for DS and FH spread spectrum receivers, respectively. These results
are compared with COMLNK and selected test results in Section 3.2.

3.1 IDEAL DELAY OFFSET AND SIGNAL LOSS.

Direct sequence and frequency hopped spread spectrum receivers have different
mathematical descriptions for the early and late samples that are inputs to a delay-lock
loop tracking filter. Thus we must treat them separately.

A functional block diagram of a direct sequence, phase-shift keying (DS/PSK)
receiver with a separate code correlator for DLL tracking is shown in Figure 3-1. An
adaptive automatic frequency/phase control (AFC/Costas) loop is used to track phase
when possible or to track frequency when phase lock is lost. The differentially encoded
PSK signal is then coherently demodulated (APSK) or differentially coherently de-
modulated (DPSK) when the AFC/Costas loop is in phase lock or not, respectively.

2 COMLNK allows monitoring of most internal parameters that could in principle be monitored in a re-
ceiver. However, there is usually very limited access, if any, to such parameters in an actual receiver,
unless it is specifically designed to include a variety of test points.
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3.1.1 Direct Sequence Spread Spectrum Delay Tracking.

In a direct sequence spread spectrum (DS/SS) receiver, early and late voltages
are formed with a code correlator’ using early and late versions of the locally gener-
ated pseudo-noise (PN) code. The DLL error measurement is proportional to the dif-
ference in the energy between the early and late samples, and the ideal delay offset is
that for which the mean energy difference is zero. To analyze ideal delay offset we
must construct the early and late code correlator output voltages in terms of the trans-
mitted PN sequence and the channel impulse response function.

The transmitted DS/SS modulation is*

t
()= I — -k

C

where m; = *1 randomly is the PN code, and T is the chip period of the code
(Rc =1/T¢ is the code rate). The symbol II(-) denotes the rectangular function that is

defined as
1 iflx<d
=} =
0 otherwise

As described in Section 2, the received signal is the convolution of the channel impulse
response function and the transmitted modulation:

u(t) = rTm(t -1)h(t,1)dt (3.1)
0

* The early and late voltages are usually generated by the same code correlator, which is time-shared

between the two measurements.

We have ignored the data modulation in this theoretical analysis because we assume that the number of
PN chips per channel symbol is large and that the delay error tracking measurements are all made
within single symbol periods. Because we consider non-coherent tracking where early and late energy
samples are compared, the ideal delay offset is independent of the data modulation. This is only one of
several design configurations available in COMLNK, wherein effects of data modulation are treated in
detail.
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where r is the mean received signal amplitude, and h{¢, 1) is the CIRF which is a func-
tion of time ¢ and delay or time-of-arrival 7. When the CIRF is sampled the integral in
this equation is replaced by a summation:

N.-1
u®)=r Y m(t—iAt)h(z) ,
i=0
where A7 is the delay sample size, N, is the number of delay samples (Eqn. 2.13), and
k(1) is the time-varying channel response for the i delay bin.

If we assume that the receiver advances or retards its locally generated PN code
to match that of the received signal and integrates over a fixed sample period T, then
the signal contributions to the early, on-time, and late voltage samples are represented
by the expressions

1 52
Sg== [m (=15 +Tc/2)u)dr
S -T,/2
1 T2
So== [m (t—1p)u(t)dr :
S -T2
1,12
Sp== [m (@=1tp-Tc/2)u(t)dt
Ts 12

where m”(z) is the locally generated PN code, T p 1s the delay offset, and u(?) is the
received signal. Note that the early voltage is formed by correlating the received volt-
age with the local PN code advanced in time by one-half chip period, and the late volt-
age is formed by correlating the received signal with the local PN code delayed by one-
half chip relative to the on-time code.

It is shown in Appendix B that the signal contributions to the average energy of
the early, on-time, and late code correlator outputs for a continuous channel impulse
response function are

(Eg)=(SeSe)=r" |Tc G(TE) A’ [t — &~ §]dE

(Eg)=(SoSp)=r* [To G(TE) A [t —E]dE  (Continuous CIRF)

o8 Oo+—§
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[o0]

(Ep)=(S,81)=r? [T G(TE) A [1p - & +4]dE
0

where T, =1, /T is the normalized delay error, and G(-) is the power impulse re-
sponse function defined in Section 2. The triangle function A(') is the autocorrelation
of the rectangular function:
1-x if |x|<1
A= { o il

0 otherwise

When the CIRF is sampled the integrals are replaced by sums:

N.-1
(Eg)=r" ) PiAZ[TD —i/Np “%]
=0
N~1
(Ep)=r* Y P Az, -i/Np] (Sampled CIRF)
i=0
N.-1
(EL)=r* Y RN [tp~i/Np+1]
i=0

where N = T /At is the number of delay samples per chip period, and F, is the aver-
age fading power in the delay samples (Eqn. 2.14).

A non-coherent DLL attempts to equalize the energy in the early and late sam-
ples, so the DLL error signal is proportional to the measured difference in the early
and late samples, E; — E;. The ideal delay offset is then found by solving the equation

<EE(%D)> = <EL(%D)>

for the normalized delay error 1. For frequency selective fading channels, the ideal
delay offset is a function of the ratio of the frequency selective bandwidth to the chip

rate, fo/Rc.

The signal energy at the output of the on-time code correlator is just (Eo(Tp))-
This quantity is less than r? (its maximum value in a benign propagation environment)
in frequency selective fading channels because signal energy arriving either early or
late relative to Tp by more than one chip period is severely attenuated by the code cor-
relation process. Stated in another way, the received signal spectrum is distorted by the
channel, and the code correlator is no longer matched to the signal.
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3.1.2 Frequency Hopped Spread Spectrum Delay Tracking.

A functional block diagram of a FH M-ary frequency-shift keying (FH/FSK) re-
ceiver is shown in Figure 3-2. The tracking loops in this example receiver are the
DLL, automatic gain control (AGC), and automatic frequency control (AFC)’.

In Appendix G of this report we show that the demodulation performance of a
FH/FSK receiver is sensitive to the delay offset as are all digital demodulators. Thus it
is critical that a simulation of any communications link get the delay offset right as well
as frequency error and perhaps phase error. A brief summary of the mathematical de-
velopments in Appendix G follows.

For the purpose of computing theoretical delay offset and demodulation per-
formance of FH/FSK systems, we assume a single FSK modulation symbol per hop. An
isolated rectangular pulse then approximates the transmitted FSK signal®:

m(t) = exp[jnyT Af t]H[—H ,

where ny is the transmitted tone (n, =+1 randomly’ for BFSK, ny = +1, +3 randomly
for QFSK, ny ==1, £ 3, £5, +7 randomly for 8-ary FSK, and so on), and Af is the
tone spacing. The product Af T is equal to a positive integer for orthogonal signaling®.

Here M-ary FSK demodulation is indicated, but frequency-hopped phase-shift keying (FH/PSK) re-
ceivers have similar functional diagrams.

COMLNK does not make these assumptions. All waveforms involve a sequence of modulation sym-
bols that may have any frequency offset from one symbol to the next. Thus COMLNK can treat any
number of FSK modulation symbols per hop.

In theoretical developments we assume that zeros and ones are equally likely and randomly distributed
in the transmitted data stream. Thus each FSK tone is equally likely. In COMLNK, as in an actual
system, the user specifies the transmitted data stream, which may undergo a series of coding, inter-
leaving, and alphabet translation operations prior to reaching the modulator.

Note that this entire development assumes conventional M-ary FSK, wherein each transmitted tone has

a fixed offset from the center carrier frequency. This is only one option available in COMLNK, which
also implements independent tone M-ary FSK and FH/PSK receivers.
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The symbols preceding and following this “on-time” pulse are transmitted at dif-
ferent carrier frequencies determined by the pseudo-random hop pattern. During the
on-time pulse period the receiver is set to the transmitted carrier frequency assuming
that the receiver is synchronized to the hop pattern. Prior to forming the FSK tone fil-
ters, the received signal is band-pass filtered so signal energy from other tones at dif-
ferent carrier frequencies is severely attenuated and is ignored in this analysis.

Separate filters are formed in the receiver for each of the possible M transmitted
tones. For non-coherent demodulation considered here, the filter with the largest out-
put amplitude is chosen as corresponding to the transmitted tone. For suppressed-
carrier tracking which is tacitly assumed here, the filter with the largest output deter-
mines the frequency offset at which two more filters are formed. These two filters

provide samples for delay tracking during the first and second halves of the detected
symbol.

For this calculation we assume that the DLL tracking threshold (i.e., the signal-
to-noise ratio above which the DLL can maintain lock on the signal) is well below the
demodulation threshold (i.e., the signal-to-noise ratio above which an “incorrect” filter
rarely has the largest output energy). Thus at signal-to-noise ratios where the demodu-
lation error rate is small (say below about 10-20 percent), the DLL should be tracking
with nearly the ideal error, and the effect of demodulation errors on the DLL input er-
ror signals can be ignored in the analysis’.

The on-time signal contribution to the output of the correct tone filter is

1 T/2+1p :
So== [u®yexp[-jnynaft]dr ,
T -T/2+7p
where 7T, is the delay offset, and T is the symbol period (also the hop period in this

analysis). To perform delay tracking, early and late samples are formed at the fre-
quency offset of the correct filter:

® COMLNK does not involve any such assumption. If suppressed-carrier tracking is selected (sync

symbol tracking is another option), data demodulation errors degrade tracking loop operation, espe-
cially when the demodulation error rate is large. Thus the suppressed-carrier tracking threshold coin-
cides with the demodulation threshold in COMLNK, as in a real receiver.
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Tp
Sg = 1 [u(r)exp[-jnym Af t]dt
T':D—T/2

Tp+T/2
SL=? Ju(r)exp[—-jnOTCAft]dt .

o
The on-time signal used for demodulation is equivalent to Sg +§; .

In Appendix G it is shown that for a continuous CIRF the signal contribution to
early, on-time, and late energy is

(Eg)=(5553) = 1 | TG(TE)= [2(E - ) + 4]t

[

(Ep)=(SpS5)=r? ZT G(TE)A*[E - % |dE (Continuous CIRF)

<EL>=<SLSz>=%r2°(J:TG<Ta>r~:2 [2(6-p) - 4] de

where Z(-) is the trapezoid function defined as
1 if|x|< %
E(x)=12-|x| if 1<|x|<3 .

0 otherwise

For sampled CIRFs these equations become

N~1
(Eg)=%r* Y BE*[2(1/Np-1p)+1]

i=0

N,-1
E))=r*Y P A*[i/Np -1 (Sampled CIRF)
0 rd D D

N,~1

(EL>=%’2 20 PzEz [Z(I/ND —TD)_%]

The ideal delay offset is found by solving the equation (Ez)=(E;) for %p.

In a frequency selective fading channel, the on-time signal energy (Ep(1p)) is
less than its maximum value (r?) in a benign environment because transmitted energy
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arriving early (at times before 1T, —T/2) arrives before the receiver has hopped to the
on-time carrier frequency and transmitted energy arriving late (at times after

Tp +T/2) arrives after the receiver has hopped to the carrier frequency for the next
transmitted tone. Only signal energy arriving in the period Tp —-T/2<t<1,+7T/2
contributes to the output of the on-time tone filter.

3.2 COMLNK DLL TRACKING AND SIGNAL LOSS.

In this section we compare measured values of the DLL tracking error and re-
ceived signal energy from COMLNK with the ideal values computed above. However,
before making these comparisons, a few comments on fidelity of such measurements,
whether from a simulation or from actual hardware, are in order.

3.2.1 Raw Data From COMLNK.

COMLNK is a faithful emulation of a modern digital communications link. Thus
measurements of received signal energy and DLL tracking errors are always corrupted
by noise and transients just as they are in an actual receiver. Furthermore, analysis
provides ensemble average values, whereas measurements from a simulation or from
hardware are averages over a limited time span using specific realizations of the signal
and noise processes.

To illustrate the implication of this point we show in Figures 3-3 through 3-12,
for five values of the ratio f,/R., the simulated AGC gains (in decibels) and the DLL
tracking errors (in units of the PN chip period T) of a DS/DPSK receiver as a func-
tion of time over the 100-second period of each case (zero time corresponds to the start
of the simulation). The channel bit energy-to-noise spectral density ratio E_, /N, is
30 dB for each case, and the frequency selective channel in COMLNK is sampled with
tap spacing equal to one-half the chip period, so N =T-/At =2. For each plot, the
channel decorrelation time () is 0.03 seconds, the AGC time constant is 3 seconds,
and the DLL and frequency lock-loop (FLL) bandwidths (B, ) are 0.1 Hz.

Two mean values of AGC gain and DLL tracking error are given in the plots.
The values labeled “100 sec” are computed by COMLNK and represent time averages
over the entire simulation period. (A mean value of the AGC gain of 0 dB corresponds
to no loss in signal energy at the output of the on-time code correlator.)
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Figure 3-3.  AGC gain of DS receiver in a frequency selective fading channel
with fo/Rc =1.0.
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Figure 3-4. DLL tracking error of DS receiver in a frequency selective fading
channel with f,/ R, =1.0.
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Figure 3-5. AGC gain of DS receiver in a frequency selective fading channel
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Figure 3-6. DLL tracking error of DS receiver in a frequency selective fading
channel with f, /R, =0.2.
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Figure 3-7. AGC gain of DS receiver in a frequency selective fading channel

1.0

0.8

0.6

0.4

0.2

Delay Error (PN Chips)

0.0

. E_/N,=30dB
| fz/Rc =0.1
ra=0.03 sec
DLL B =0.1Hz

Mean Values -]
0.345 Chip (100 sec)
0.372 Chip (80 sec)

I | I I —

0 10 20 30

40 50 60 70 80 90 100
Time (Seconds)

Figure 3-8. DLL tracking error of DS receiver in a frequency selective fading
channel with f, /R, =0.1.
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Figure 3-9. AGC gain of DS receiver in a frequency selective fading channel
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Figure 3-10. DLL tracking error of DS receiver in a frequency selective fading
channel with f,/R. =0.08.
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Figure 3-11. AGC gain of DS receiver in a frequency selective fading channel
with f,/Rc =0.06.
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Figure 3-12. DLL tracking error of DS receiver in a frequency selective fading
channel with f, /R, =0.06.
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Even if the track histories were smooth, these mean values would tend to under-
state the tracking errors and signal loss because of the initial transient. For the delay
and frequency tracking loops we use a rather small bandwidth of 0.1 Hz and for the
AGC we use a rather long time constant of 3 seconds to minimize the variation with
signal strength fluctuations. This, of course, causes a rather slow response to the mean
loss and mean delay of the received signal. Larger loop bandwidths would result in
much larger fluctuations in the AGC gain and DLL tracking error than are observed in
these plots.

When the initial transient is removed by deleting the first 20 seconds of data
from the time averages, it is evident that these measurements labeled “80 sec” still can
exhibit significant statistical fluctuation, particularly at small values of fy/R.. This is
a real-world phenomenon and illustrates the difficulty in accurately measuring the
mean signal loss and delay error in real or simulated systems. Nevertheless, the track-
ing loop transients at the beginning of the simulation appear to have only a small effect
on the mean AGC gain and DLL error, on the order of a few tenths of a decibel and a
few hundredths of a chip, respectively.

3.2.2 Comparison of COMLNK Delay Tracking with Theory.

A comparison between DLL tracking errors (in units of the PN chip period, T,)
from averaging COMLNK measurements and the theoretical delay offset in frequency
selective fading is shown in Figure 3-13 for a direct sequence spread spectrum re-
ceiver. Other than Rayleigh fading, no other signal dynamics are applied here such as
occur from slant range or total electron content dynamics, although they are imple-
mented in the simulation program. The COMLNK data plotted with solid circles are
from the simulation runs discussed in the previous subsection (100 second averages are
plotted), and the COMLNK data plotted with open circles are from Dana, Milner, and
Bogusch [1995].
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Figure 3-13. Comparison of COMLNK and ideal direct sequence delay tracking er-
rors in frequency selective fading channels.

The ideal curves in Figure 3-13, taken from results presented in Appendix B,
are for a continuous CIRF and for a sampled CIRF with two samples per PN chip,
which is the tap spacing currently used in COMLNK?".

There is excellent agreement between the COMLNK results and the ideal sam-
pled CIRF curve for f;/R. values above 0.05 or so. This agreement does break down
for values of f,/R. less than about 0.05, as expected. For channels with such small
values of frequency selective bandwidth, the early and late energy are nearly equal and
slowly varying with delay for values of T, greater than zero. At smaller values of de-
lay the late energy rapidly approaches zero so there is good discrimination in the delay
. error measurement, Eg — E;. Thus an actual DLL tends to wander on a very flat error

' On the basis of results shown here, a future version of COMLNK may allow the number of delay
samples per chip to be selectable by user input. This will enable users to obtain delay tracking per-
formance results that are closer to the continuous CIRF curve at the expense of additional computation
time. When comparisons with hardware test results are to be made, however, the delay spacing in
COMLNK should correspond to the delay spacing employed in the hardware channel simulator.
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surface under these conditions, except when the delay approaches zero. Then the error
measurement gives the DLL a strong push to larger delays. Hence an actual DLL is bi-
ased towards larger delays than the theoretical value when f,/R is small. The depar-~
ture of the measurements from theory at low signal levels, resulting here from small
Jo/Rc, is typical of the tracking threshold observed in any nonlinear tracking loop.

The corresponding code correlator loss is plotted in Figure 3-14. COMLNK re-
sults for the five cases discussed above are plotted with solid circles. The solid triangles
with error bars are prototype L;P receiver test results generated using the DSWA
NELS II channel simulator [Bogusch and Guigliano, 1982; Dana, 1995¢]''. Again there
is good agreement between the COMLNK results and the ideal curve, and for the code
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Figure 3-14. Comparison of COMLNK, L;P test results, and ideal direct sequence
code correlator loss in frequency selective fading channels.

"' This prototype receiver, which uses the Global Positioning System (GPS) P-code, was tested with the
NELS II 20 nsec tapped delay line. The GPS P-code has a 10.23 MHz chip rate so the number of

NELS taps per chip is about 5.
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correlator loss, there is also excellent agreement between COMLNK results and actual
hardware measurements. Note again that both the COMLNK and actual hardware test
results are obtained from AGC operation, which as shown earlier can easily introduce
a measurement uncertainty of several tenths of a decibel at small values of f, / R..

These results show that the signal energy loss at the output of the on-time code
correlator is relatively insensitive to the number of delay samples per chip. For com-
munications links this may be all that is necessary for COMLNK to accurately repro-
duce the error rate performance of an actual receiver operating in a channel with a
continuous CIRF. However, if COMLNK is used to simulate the navigation perform-
ance of a Global Positioning System (GPS) receiver in frequency selective channels for
example, then the discrepancy between the delay offset with a sampled CIRF and that
which would occur with a continuous CIRF may indeed be very significant, assuming
that the GPS receiver could maintain code lock in such cases. Note that this also applies
to an actual GPS receiver that is being tested with a hardware channel simulator.

The ideal delay offset for a frequency hopped FSK spread spectrum receiver is
plotted in Figure 3-15. The corresponding signal energy loss at the output of the cor-
rect tone filter is plotted in Figure 3-16. The delay offset is plotted for a continuous
CIRF and for a sampled CIRF with two delay samples per symbol period, 7. There is-
excellent agreement between the delay offset from COMLNK and the ideal results.

Again there 1s a discrepancy between the delay offset for a coarsely sampled
CIRF and that for a continuous CIRF.

Note that the number of channel delay samples per modulation symbol period
makes little difference in the signal energy at the output of the correct tone filter. The
solid line in Figure 3-16 is the ideal loss in signal energy for a continuous CIRF, and
the dashed line is the loss for a CIRF with two samples per modulation period. The
solid circles are losses measured with a COMLNK simulation of a FH link using two
channel delay samples per symbol and a finite signal-to-noise ratio. These measure-
ments were obtained by measuring the average AGC gain, a measurement that could
also be made using an actual receiver. The effect of the initial transient in the AGC
gain has been minimized by deleting the first 20 seconds of data from the time aver-
ages.
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For either a DS or FH system, there probably is little measurable difference in
communications link performance for continuous and sampled CIRFs when both have
delay errors less than a tenth of a chip or so. However, for small values of f, /R, this
difference can be several tenths of a chip. Under these conditions and when the re-
ceived signal is also undergoing time-of-arrival dynamics, such differences in delay
tracking may determine whether or not the receiver maintains lock on the signal, al-
though data demodulation will likely be unacceptably bad in either case.

Although we have concentrated here on the effects of channel delay sampling on
simulated delay tracking performance, these effects also exist in hardware channel
simulators connected to actual receivers. Frequency selective channel simulators such
as NELS and the new DSWA Advanced Channel Simulator (ACS) [Dana, 1995a] are
implemented using tapped delay lines with some number of taps per chip, just as in

- COMLNK. With a fixed number of taps, the way one simulates channels with smaller

values of frequency selective bandwidth is to increase the tap delay spacing. If the re-
sulting number of taps per chip is small, one needs to be careful that receiver perform-
ance is not unduly affected by channel tap spacing. Because of its high degree of accu-
racy, COMLNK is an excellent tool for investigating the effect of tap spacing on
tracking loop operation and data demodulation performance.
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SECTION 4
COMLNK DEMODULATION PERFORMANCE

A critical step in the COMLNK validation process involves comparison of meas-
ured demodulated error rates with theoretical results. After the demodulator,
COMLNK is an emulation of a modern digital receiver. It is at the demodulator that
the simulation of the channel, thermal noise, and transmitted modulation come to-

gether, and it is at that point that we compare measured error rates from COMLNK
with theoretical curves.

Analytic expressions are available for phase-shift keying (PSK) and frequency-
shift keying (FSK) modulation formats for non-fading and slow Rayleigh fading chan-
nels (see, for example, Schwartz, Bennett, and Stein [1966] or Bogusch [1989]). How-
ever, the stressing channels for demodulation are fast fading or frequency selective
fading or both, and only a limited number of analytic results were previously available
for these types of channels (for example Bello and Nelin [1962a, 1962b, 1963]). Thus
to thoroughly validate the COMLNK simulation we have derived new results for PSK
and FSK demodulation performance in fast, frequency selective fading channels in-
cluding, in some cases, the effects of channel delay sampling and delay offset. These
new results are derived in the Appendices to this report and are summarized in the
following subsections.

This section is organized as follows. In Section 4.1 we compare simulated and
theoretical PSK and FSK demodulation performance in non-Rayleigh (Rician) and slow
Rayleigh fading channels. Then COMLNK demodulation performance in fast, flat
Rayleigh fading is compared with theory in Section 4.2 for differentially coherent PSK
(DPSK) and non-coherent M-ary FSK. Finally, COMLNK frequency selective fading
demodulation performance of DPSK and binary FSK (BFSK) with and without fre-
quency hopping is discussed in Section 4.3.

4.1 SLOW RICIAN AND RAYLEIGH FADING CHANNELS.

In the context of demodulation, slow fading means that the channel decorrelation
time is long compared to any time scale over which the receiver expects the signal to
be coherent. Slow fading demodulation error rates are then given by averaging non-
fading expressions over the probability distribution of the fading amplitude and, as
such, are independent of the Doppler frequency spectrum of the fading. The time scale
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over which the receiver expects the signal to be coherent depends on the transmitted
modulation rate and on the approach to demodulation. For coherent demodulation, the
receiver must maintain phase-lock on the signal, and the coherence time is inversely
related to the bandwidth of the phase-lock loop. For differentially coherent PSK de-
modulation and non-coherent FSK demodulation, the relevant time scale is that of the
channel symbol period.

4.1.1 Error Rate Expressions.

The APSK, DPSK, and M-ary FSK channel bit error rates in AWGN channels
are given by the usual formulas:

P, = exfc[\[E, [No |{1-}erfc[E, /N |} (non-fading APSK)

P, =texp[-E,,/Ny] (non-fading DPSK)
M -2\ -

P=Y (-1 (M/2)(M - 2); exp| — (k—1)log, M Ey (non-fading M-ary FSK)
= (M- ) kN,

where E_, /N, is the channel bit energy-to-noise spectral density ratio, and erfc(-) is
the complementary error function. Note that there are log, M channel bits per symbol
in M-ary FSK.

Theoretical formulas for slow fading channel bit error rates are given by aver-
aging these expressions over the distribution of fading amplitude. Although there is not
a single probability distribution that describes non-Rayleigh fading, the Rician distri-
bution appears to represent a reasonable worst-case [Dana, 1993]. This distribution has
the added advantage of being easily implemented as Rayleigh fading plus a constant
component. The Rician probability density function of the fading power is given in
Equation 2.2 of this report, and is reproduced here:

1 R+S 2+ RS
. = - I ,
lece(S) l_Rexpl: I*le O[I_R]

where I;(-) is the modified Bessel function of order zero, and the average fading
power (S) is unity. The quantity R is the “Rician Index” which is defined in terms of

the scintillation index S,:
R=41-52 .
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For non-fading channels (S, =0 and R =1) the Rician power probability density func-
tion behaves as the delta-function 3(S —1), and for Rayleigh fading channels (S, =1
and R =0) the Rician power probability density function reduces to the Rayleigh ex-
ponential form. '

Theoretical slow Rician fading PSK and FSK channel bit error rates are given by
averaging the non-fading results over the probability density function of the instanta-
neous received channel bit energy-to-noise spectral density ratio:

<Pe> = TPe('YS)fche(S)dS s
0

where Y= E_, /Ny is the average channel bit energy-to-noise spectral density ratio. For
APSK the resulting integral cannot be obtained in closed form to the authors’ knowl-
edge, so the indicated integral must be done numerically. For the other two modulation
techniques, the Rician fading channel bit error rates are

! Ry o
Fe)= - Slow, Rician-fading DPSK
(E.) 2+2(1_R)Yexp[ 1+(1—R)Y} (Slow, Rician-fading )

&, (M) (M-2) 1 Ry
(11)—/?.;2( D k(M — k) 1.+(1——R)ykexP[ 1+(1—kR)yk]

(Slow, Rician-fading M-ary FSK)

where v, =(1-1/k)(log, M)E_, /N,. The APSK error rate can be obtained in closed
form for Rayleigh fading, so the Rayleigh fading channel bit error rate expressions for
the three modulation-demodulation techniques are

1 n—2tan‘1(1/1 +y‘1)

(R)=5- — (Slow, Rayleigh-fading APSK)
n\/ 1+y

(Pe> =3 '*'12Y (Slow, Rayleigh-fading DPSK)

M -2\
(PY= Y (-1 (M/2)(M-2) 1 (Slow, Rayleigh-fading M-ary FSK)
k=2

K(M-k)Y 1+7,
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4.1.2 M-ary FSK Sampling Loss.

In an actual receiver or in COMLNK, the tone filters of an M-ary FSK receiver
are often implemented using discrete Fourier transforms (DFTs) of multiple samples
per symbol. This results in a sampling loss that must be included in the comparison
between the analytic results presented above and results from COMLNK.

To compute the sampling loss consider an isolated transmitted M-ary FSK sym-
bol. Before up-conversion to RF, the transmitted signal as a function of time is

m(1) = exp(jnyTAf) H(—;:)

where T is the symbol period, n; is the modulation index (£ an odd integer), Af is the
modulation tone spacing, and II() is the rectangular function. In the absence of fading,
the signal contribution to the k" discrete sample used in an Ny-point DFT is
1 (k+1)Ar
S, =— |m(t)dr ,
=5 [m)
where At =T/ Ny is the time duration of each sample. Sampling loss occurs because
the down-converted and sampled signal is never actually at baseband, but rather has a
radian frequency offset of nymAf. Thus the sampled signal has a time-varying phase
during the integration period Ar with a loss in output power as a result.

Upon substituting the expression for the transmitted symbol into the expression
for the discrete samples, the signal contribution to the samples reduces to
sin[4 nymAfAL|

S, =exp [ jnon(k + %)AfAt] 1 mATAC
2

The sin(x)/ x factor in this expression is the signal amplitude sampling loss given that
the n; tone was transmitted. Assuming that all M-ary symbols are equally likely, the
average sampling signal power loss 1s

2 M2 sin® [(2i = 1wy, / Ny ]
MS [A@i-Doy /N

Lg

where @, =2nAf T is the normalized tone spacing. For orthogonal signaling Af T is
a positive integer.
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4.1.3 COMLNK Results in Slow Fading Channels.

Perhaps the most basic requirement of a communications link simulation in fad-
ing channels is that it reproduces the correct non-fading and slow fading channel bit
error rates. Once this requirement is verified, then we can proceed to performance
verification in more complex fast, frequency selective fading channels.

APSK, DPSK, and 8-ary FSK channel bit error rates in slow Rician fading chan-
nels are presented in Figure 4-1 versus the scintillation index, S,. For each modulation
type the channel bit energy-to-noise spectral density ratio E_, /N, is 10 dB. No phase
variations from slant range or total electron content dynamics are imposed on the
simulated signal. The solid lines in the figure are theoretical performance curves gen-
erated from the expressions given previously in this section, and the symbols are
COMLNK simulation points. The 8-ary FSK results in Figure 4-1 are for minimum
tone spacing (Af T =1) using a 16-point DFT for demodulation. Thus there is a 0.29
dB sampling loss [Bogusch, 1989] in this case, giving an effective value of E,, /N, of
9.71 dB for the theoretical results.

The most striking feature of the results in this figure is the severe degradation of
the channel bit error rate as the channel varies from non-fading (S, =0) to full
Rayleigh fading (S, = 1). The error rates vary from between 1.6 x107° (8-ary FSK)
and 2.3x107 (DPSK) for the non-fading channel to about 4-5 percent, essentially in-
dependent of the modulation format, in the Rayleigh fading channel. Thus while one
can obtain significant improvement in non-fading channels by using 8-ary or higher
order FSK modulation, slow Rayleigh fading is a great equalizer of modulation tech-
niques. As will be seen, there are distinct differences in the performance of the modu-
lation types in fast or frequency selective fading.

There is excellent agreement between the COMLNK and theoretical results plot-
ted in Figure 4-1. The COMLNK results lie above theory as they should, but closely
follow the theoretical curves as the scintillation index varies. The most noticeable
variation between COMLNK results and theory occurs with 8-ary FSK in a non-fading
channel. This difference is due in part to the finite precision of the sine and cosine ta-
bles in used to perform the DFT demodulation in COMLNK. Finite precision results in
a quantization loss in addition to the sampling loss already included in the theoretical
results. This is one of the many implementation considerations faced by designers of
digital communications equipment.
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Figure 4-1.  Channel bit error rates of APSK, DPSK, and 8-ary FSK in slow Rician
fading channels.
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Two sets of COMLNK results for APSK are plotted in Figure 4-1 because there
are at least two ways to demodulate this waveform. Coherent PSK demodulation with
absolute phase encoding is generally rendered useless in a fading channel (slow or oth-
erwise) by numerous phase slips in the phase-lock loop'. Thus for fading channel ap-
plications, coherent PSK should be implemented using differentially encoding and de-
coding to resolve the inherent 7-phase ambiguity arising from suppressed-carrier
phase-lock demodulation. The only meaningful error rates are those after the differen-
tial decoder. Another way to implement APSK is to use DPSK modulation directly with
coherent phase-lock demodulation. This technique is perhaps best described as I-
channel DPSK demodulation because the O-channel samples are dropped from the data
demodulation algorithm.

The two techniques produce results that are similar, but not identical. The basic
distinction is that the first technique performs differential demodulation with hard I-
channel binary decisions (labeled “Hard I-Channel Demod” in the figure), while the
second performs differential demodulation with soft I-channel samples (labeled “Soft I-
Channel Demod” in the figure). Both techniques suffer significantly from imperfect
phase tracking. The results show a clear, albeit small, advantage of the hard limited
version of APSK over I-channel DPSK. Apparently the noise statistics that occur when
hard limited samples are multiplied are different and slightly more favorable than
those that occur when non-limited samples are multiplied. The squared noise in the
latter case (/-channel DPSK) is slightly worse.

While APSK performs better than DPSK in non-fading channels and about the
same as DPSK in slow Rayleigh fading, Bogusch [1989] shows that APSK performs
significantly worse than DPSK in fast Rayleigh fading channels. Thus DPSK is the pre-
ferred PSK technique for communications links that must contend with fading.

A powerful mitigation technique is diversity combining of signals that are inde-
pendently fading. It is much less likely that two independently fading signals will si-
multaneously be in deep fades than it is that either one will be in a deep fade. However,
simply coherently combining independently fading signals does not improve the signal-

! An exception to this generalization arises for very high data rate links that employ exceptionally large
phase-lock loop bandwidths. In such cases the occurrence of phase slips may be sufficiently infrequent
as to enable coherent PSK demodulation to be used successfully, with CRC or frame synchronization
techniques for ambiguity resolution.
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to-noise ratio because the signals are non-coherent. Thus non-coherent techniques must
be used, and DPSK demodulation produces an ideal quantity for combining.

The basic decision metric for DPSK demodulation is
m=Ll |+ 00

where [, and Q, are the in-phase and quadrature-phase voltage samples for the K"
symbol period. A positive value for m indicates no phase change in the received signal
between the k — 1" and k" symbol periods, and a negative value indicates a n-phase
change. If exactly the same data is available on N¢ channels then one can simply sum
together the DPSK decision metrics for all the channels:

.1 % )
m=——2m; .
The resulting DPSK demodulation error rate is computed in Appendix E for combining
of two and three metrics.

One way to implement diversity combining is take advantage of the time diversity
in a Rayleigh fading channel. An example is a link with a block interleaver. To imple-
ment diversity combining, one simply uses block repetition (i.e., the data in the block
interleaver is repeated multiple times and the DPSK metrics for the same channel bit in
each block are combined). Assuming a statistically stationary channel, each individual
decision metric has the same average value of E,,/N, but fades independently if the
interleaver span is chosen to be long compared to the channel decorrelation time.

When the individual DPSK decision metrics fade independently, the combined

DPSK demodulation error rates are

e’ 1 Channel
(4+y)e” 2 Channels

%(32+12y+5*)e” 3 Channels

ol tof—

where v is the average value of E,, /N, .
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These theoretical two- and three-channel diversity combining bit error rate results
(i.e., the error rate after combining assuming no further processing) are compared with
COMLNK simulation results in Figure 4-2. The user bit energy-to-noise spectral density
ratio E,; /N, is the same for all diversity combining cases. The value of E_; /N, then
depends on the number of combined channels:

E /Ny (dB) = E,| Ny (dB) - 1010g,o (Nc) -
This keeps the total user bit energy constant as the number of channels changes.

For comparison, the ideal single-channel DPSK user error rates for non-fading
and Rayleigh fading channels are also plotted in the figure. The simulation runs were
generated using a block interleaver with a span equal to 240 times the channel decorre-
lation time without repetition. To keep the user bit rate constant with repetition, the in-
terleaver span is effectively reduced as the number of repetitions increases. Thus the
separation between repeated channel symbols is 1201, for two repeats and 801, for
three repeats. These separations are sufficiently large that the fading from symbol-to-
symbol is independent.

Three sets of simulation results are plotted in Figure 4-2. The first set, labeled
“COMLNK (AGC, 4 Bits)” was generated first for two-channel combining and plotted
with open circles. The second set, labeled “ COMLNK (No AGC, 4 bits)” was generated
for both two- and three-channel diversity combining using 4 bit quantization of the in-
dividual DPSK decision metrics. The third set, consisting of two points labeled
“COMLNK (No AGC, 8 bits),” was generated using 8 bit quantization of the individual
decision metrics.

The first set of data was generated with the automatic gain control (AGC) track-
ing loop on because the runs encompassed a large range in signal strengths, and a real
receiver would attempt to maintain the signal level near some design value. At large
values of E,, /N, we observed that the two-channel DPSK demodulator was beginning
to depart from theory, with the departure increasing as the signal energy increased. The
result is a tendency for the error rate curve to flatten out to an apparent “irreducible”
value. However, the channel fading rate is very slow compared to the symbol rate, so
phase effects do not explain this data.
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An active signal-based AGC reduces the signal level when E_, /N, is above the
design value, and small quantized values of signal plus noise in fades results in a loss of
precision. At very large mean signal strengths, both the signal and noise voltages can
fall off the bottom of the quantizer during deep fades. Thus, while an ideal analog de-
modulator would likely make correct decision, a real digital demodulator with a signal-
based AGC will produce zeros during deep fades, which are correct 50 percent of the
time, on the average.

This is a real phenomenon. It normally causes no problem because when it oc-
curs the demodulation error rate is so low that any decent error-correction decoder
produces no errors. It is also not a problem in a non-fading channel where the signal
remains at its mean level. It is noteworthy that COMLNK exhibits this degree of fidel-
ity. The AGC parameters could have been chosen to provide improved operation.
However, to compare COMLNK results with theory we reran the two-channel simula-
tions with the AGC turned off, and observed that the demodulation error rates were
close to the theoretical curve over the full range of signal strength. The three-channel
case was only run with the AGC off.

Although the COMLNK results with the AGC turned off follow the theoretical
curves, the solid circle simulation points do tend to deviate from theory at low error
rates. This, we suspected, is due to the finite precision of the individual decision met-
rics even with the AGC turned off. Most of the cases were run with 4 bits of precision
in m before combining. To test this hypothesis, we reran both the two- and three-
channel cases at one large value of E,, /N, using 8 bits of precision in # before com-
bining. These results, plotted with solid squares in the figure, fall right on the corre-
sponding theoretical curves. Thus, not only are the DPSK demodulation and combining
results verified, it is also seen that COMLNK provides the fidelity to investigate hard-
ware design details such as quantization.

4.2 FAST RAYLEIGH FADING CHANNELS.

Real Rayleigh fading channels are not infinitely slow, and further degradation in
the channel bit error rate occurs when fast fading effects are considered. Demodulation
error rates for DPSK and binary FSK (BFSK) were derived by Bello and Nellin
[1963b] about 35 years ago. Rutherford [1978] extended these results to M-ary FSK by
ignoring the tone filter cross correlation terms. We report new fast fading results for
DPSK and M-ary FSK in the appendices of this report for the Doppler frequency
spectra characteristic of transionospheric scintillation [Wittwer, 1980]. Unfortunately,
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these results are not given by simple mathematical expressions as is the case for slow
Rayleigh fading, so we leave some details in the appendices.

4.2.1 DPSK Performance.

The single-channel fast fading DPSK demodulation error rate, derived in Ap-
pendix B of this report, is |

Y[R -R]+1

P)= ‘ o
(R.) JR o1 (DPSK. Fast Reyleigh Fading) |

where

1
R =2[1-8)p(TO)dt ,
0

1
Ry=1[a-&){p[ra-8)]+p[Ta+8)]} d& .
4]

T is the channel bit period (1/T is the channel bit rate), and p(') is the temporal auto-
correlation function of the fading. Analytic results are possible for DPSK performance
in fast Rayleigh fading for all cases where these integrals have closed form expressions.
(R, and R, for the Gaussian and f~* Doppler frequency are given in Appendix B).

A comparison of COMLNK and theoretical results for the DPSK channel bit er-
ror rate in fast Rayleigh fading with an f 4 Doppler frequency spectrum is shown in
Figure 4-3 for several values of the ratio of the channel decorrelation time to the
channel bit period, 1,/7,,. Excellent agreement is seen in the figure between the
simulation and theoretical results.

Another presentation of these data is to consider the channel bit energy-to-noise
spectral density ratio necessary to achieve a 10 percent channel bit error rate. This is
an interesting error rate because maximume-likelihood, low-rate error correction de-
coders with uncorrelated input errors at this error rate produce an output error rate of
107 or less. The required value of E_, /Ny to achieve the ten percent demodulated er-
ror rate is shown in Figure 4-4 for APSK and DPSK modulation. The solid line in the
figure is the theoretical curve for DPSK, and the circles are COMLNK simulation
points (open circles connected by a dashed line for APSK and solid circles for DPSK).
To the authors’ knowledge, no fast fading analytic result exists for APSK. Again close
agreement is seen between the COMLNK and theoretical DPSK results.
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The results in Figure 4-4 illustrate that DPSK has more robust performance in
fast fading than does APSK. Indeed for the same channel bit rate, one can operate a
DPSK link in faster fading channels (by a factor of 2 or so) with a lower signal-to-
noise ratio than is required with APSK.

DPSK test data are available from the prototype L;P receiver scintillation test
program conducted with the NELS channel simulator circa 1982 [Bogusch and
Guigliano, 1982; Dana, 1995c¢]. Channel bit error rate measurements obtained at chan-
nel decorrelation times of 5 and 100 msec are compared with recently generated
COMLNK results in Figure 4-5°

4.2.2 BFSK Performance.

An exact expression for the binary frequency-shift keying (BFSK) channel bit
error rate is derived in Appendix F. This expression is
(R, =% - R-R - (BFSK, Fast Rayleigh Fading) ,
V(R + Ry +2y7') — 4R

where
1
R =2[p(TE)(1-8)dE (4.1)
0
]
R, =2[p(TE)(1-&)cos(w§)dE (4.2)
0
_N\&T L
Ry = %——J p(TE)sin (&) d& (4.3)
0

? The remarkable agreement to within a small fraction of a decibel between test, theory, and simulation
results seen in this figure is achieved by applying an implementation loss to the theoretical and
COMLNK results. This loss of 1.5 dB is derived from non-fading test results as described in Dana
[1995c¢]. Nonetheless, the test and simulation results follow the precise shape of the theoretical curves,
validating both the theory and COMLNK, as well as the NELS hardware simulator.
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Figure 4-5.

The quantity T in these expressions is the FSK symbol period, which for BFSK is also
equal to the channel bit period, T, (this is not the case for higher order FSK), and the
normalized tone spacing radian frequency is ®,, = 2rnAf T. Expressions for R,, R,,
and R; for the f 4 Doppler frequency spectrum are given in Appendix F. To the
authors’ knowledge, closed form expressions for these integrals are not possible for the
Gaussian spectrum, although the integrals can be evaluated numerically in this case. In
slow Rayleigh fading, R, and R; are equal to zero, R, is equal to unity, and the BFSK
fast fading channel bit error rate reduces to the slow fading expression:
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A comparison of these results to COMLNK simulation results is shown in
Figure 4-6 for minimum tone spacing (Af T =1), an f 4 Doppler frequency spec-
trum, and three values of the normalized channel decorrelation time, T /7, . For this
case the COMLNK and theoretical results agree perfectly.

4.2.3 M-ary FSK Performance.

For Rayleigh fading, the output signal plus noise voltages of the M filters of an
M-ary FSK receiver are correlated, complex, zero mean, normally distributed random
variables. It is the correlation between the signal contribution to the tone filter outputs
that makes the calculation of the non-coherent M-ary FSK demodulation error rate a
difficult mathematical problem that may not be tractable. Ignoring the correlation, it is
possible to compute the demodulation error rate for the general case from the variance
of the outputs of the M filters, as shown in Appendix F and summarized below. We

show in the appendix that ignoring the correlation gives an upper bound to the actual
demodulation error rate.

We have already calculated the variance of the output voltages of the M filters,
although a slight generalization is needed. These results are given in Equations (4.1)
and (4.2). The required generalization is that the R, integral becomes

1
Ry(k)=2 j p(7€)(1-&)cos(w k) dE
0

where £ is the distance of the other filter from the correct filter [k = (i —1)/2 where i
and ! are odd integers]. To simplify the notation, we rewrite the filter output variances

as follows:
Mo = rZ[Rl +Y—1]

, (4.4)
we =r*[Ry(k)+v7'|

where r is the mean signal amplitude. Formulas for R, and R, (k) for an f ~* Doppler
frequency spectrum are given in Appendix F with ®,, replaced by k®,,. The R, inte-
gral given in the appendix for the signal energy out of the correct tone remains the
same in this case.

It is shown in Appendix F that the probability of selecting the correct tone filter
is given by the expression
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where v, =, /ug and vy =1. The Py, terms are evaluated by recursion:

_ VoV
PM(VM)=PM—-I(VO’VZ""’VM—I)_PM—](V Zl} ’VZ""’VM—lj ,
0o+ Vi

and
Vo

B(vov)= Vo +V,

In fast fading the relationship between channel symbol error rate and the bit er-
ror rate is not given by the AWGN formula 4 M/(M —1). In deriving this expression,
it is assumed that when a demodulation error occurs all incorrect tone filters are
equally likely to be selected. This is only the case when all incorrect filters have equal
output amplitudes on the average. This is not the case with M-ary FSK demodulation in
fast fading channels. Rapid variations of signal amplitude and phase cause the received
signal spectrum to smear out. This Doppler spreading causes the receiver filters to be-
come mis-matched, and some of the signal energy that would otherwise appear at the
output of the correct filter instead appears in the outputs of adjacent filters.

Thus, when the channel bit error rate is less than 50 percent in fast fading, M-ary
FSK demodulation errors are most likely to be made by choosing a filter adjacent to
the correct filter. This changes the average number of channel bit errors per channel
symbo] error. For example, the AWGN formula predicts this ratio to be 44 for 8-ary
FSK, whereas the ratio is 1}4; when adjacent filters cause all demodulation errors. The
difference is even larger for 16-ary FSK where the AWGN formula predicts a ratio of
85 or 0.53, whereas the adjacent filter assumption results in a ratio of 1%, or 0.43. Of
course the ratio is 1 for BFSK, and one can show that it is 24 for QFSK in either case.

The difficulty here is that this change in the relationship between symbol and bit
error rate is not accounted for in our theoretical development, whereas it is treated
automatically and properly in COMLNK. We can avoid this difficulty by comparing
theoretical and simulation results for channel symbol error rates, rather than bit error
rates, for the 8-ary and 16-ary FSK cases.

For QFSK the average channel bit error rate is obtained from the probability P,
that the correct filter has the largest output amplitude as follows:

(R)=%(1-R) QFSK,
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where this formula holds whether one assumes that all incorrect tone filters are equally
likely to be chosen when a demodulation error occurs (AWGN case), or that the tone
filters adjacent to the correct one are most likely to be chosen (fast fading). Compari-
sons of the fast Rayleigh fading theoretical results with COMLNK simulation results
are presented in Figure 4-7 for QFSK with minimum tone spacing (Af 7' =1) and
10/T,, ratios of 1, 3, 10, and 30. As predicted, the simulation results fall slightly be-
low the theoretical curves that are an upper bound because the correlation between the
signal components of the tone filter outputs is ignored in the theory.

For 8-ary and 16-ary FSK, the theoretical demodulation symbol error rate is
computed from the expression (P;) =1~ F,. Comparisons between our theoretical re-
sults and COMLNK simulation results are shown in Figures 4-8 and 4-9 for §-ary FSK
with AfT =1 and Af T =3, respectively, and in Figures 4-10 and 4-11 for 16-ary FSK
with AfT =1 and Af T =3, respectively. In these figures, the channel symbol error
rate is plotted against the channel symbol energy-to-noise spectral density ratio,

E_ /Ny, for several values of the ratio of channel decorrelation time to the channel bit
period, 1,/T,,. Note that the symbol error rate limit for small values of E_ /Ny is
(M —1)/M rather than %, which is the bit error rate limit.

The agreement between the theoretical upper bounds and COMLNK results is
generally very good. For large values of 1,/T,,, the COMLNK results are consistently
below the theoretical results, and the discrepancy increases as Ty /T, increases. We
believe that this is a result of our analytical assumption that the signal contributions to
the tone filter outputs are uncorrelated. (Of course the noise contributions are always
uncorrelated for orthogonal tone spacing, but noise has no discernible effect at large
signal-to-noise ratios.) We show in Appendix F that the signal contributions to the in-
correct filter outputs are correlated, with the correlation coefficient approaching unity
for 14/T,, 2+log, M or so. The correlation between the filter outputs reduces the er-
ror probability. This correlation is inherent in the COMLNK filters, but is neglected in
the analysis’.

* Further evidence that COMLNK results are correct comes from comparison of measured values of the
average output power from all tone filters with the theoretical expected values given in Appendix F. The
neglect of the filter output correlation has no effect on these theoretical values, and the COMLNK
measurements exhibit excellent agreement.
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Thus our theoretical results for M > 2, calculated assuming uncorrelated filter
outputs, provide an upper limit to the demodulation error rate. The difference between
the theoretical results and the true error rate increases as T,/T, increases because the
correlation between the filters also increases. Eventually, as 1, /T,, gets large enough,
the signal energy out of filters becomes so small that the correlation is no longer im-
portant, and our theoretical results approach the usual slow fading limit for the error
rate. For values of t,/7T,, less than 3log, M, the correlation coefficient rapidly ap-
proaches zero, our assumption of uncorrelated outputs is correct, and close agreement
is seen between COMLNK results and our theoretical results.

In the discussion above, we point out that the ratio between the demodulated
symbol error rate and the channel bit error rate is not the same in fast fading as it is in
AWGN because adjacent filter errors are more likely in fast fading. We can predict
this ratio in the limits of slow and fast fading, but we do not have a formula for the ra-
tio in the transition regime. We can, however, compute this ratio from COMLNK
simulation results, and the ratio is plotted in Figure 4-12 versus symbol error rate for
the 16-ary case. The 12 curves plotted in the figure are from 12 different simulation
cases (To/T,, = 1,3 10, and 30, and Af T =1, 2 and 3). The 9 points along any one
curve are for 9 values of E,, /Ny (5 dB to 45 dB in 5 dB steps). Note that for some of
the curves, there are several simulation points at the minimum value of the ratio.

0.55 LEACARALL BN AR AL T 1T T 16-aryFSKReceiver

| DFT Demodulation
4 Flat Rayleigh Fading

4 t* Doppler Spectrum

"'Al‘t'o= 1/4
v Afr,=3/4
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oas = i T e
X e g s o0 i
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- % 3&{@" o #e ¢ 6 -

Bit Error Rate / Symbol Error Rate
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X+ 6saapr @O

0.40 vl Lol vl [ ST
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Symbol Error Rate

Figure 4-12. COMLNK results for the ratio of the channel bit error rate to the de-
modulated symbol error rate for 16-ary FSK.
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We predicted for this case that the ratio would vary between a maximum of
I M/(M -1) = 0.53 (the value for AWGN, slow fading or when the demodulation error
rate is large) and a minimum of %% or 0.43 (the value when only adjacent filters cause
demodulation errors). The COMLNK results fall generally within this predicted range.
In principle, one could calculate the ratio of the two error rates for the general case by
computing the probability of each incorrect filter being chosen for each of the M cor-
rect tone positions. For our validation purposes, however, the close comparison of
COMLNK with the theoretical upper bound on the channel symbol error rate and the
excellent agreement for the average power are sufficient to validate the M-ary FSK
demodulation performance.

The results for 8- and 16-ary FSK are summarized in Figures 4-13 and 4-14, re-
spectively, where the required value of E_, /N, to achieve a 10 percent channel bit er-
ror rate is plotted versus normalized decorrelation time, T /T,,. The COMLNK re-
sults, generated using Np-point DFTs, agree quite well with the theoretical predictions,
which are described in Appendix F. These results show the significant performance
gain in fast fading achieved by increasing the spacing of FSK tones.

The discrepancy between the required value of E_, /N, in fast fading computed
with COMLNK and the theoretical curves is due to the two effects discussed above.
The theoretical curve is for the AWGN value of the ratio of the channel bit error rate
to the demodulated symbol error rate, and the theory neglects the correlation in the
outputs of the tone filters. Thus for most cases the COMLNK results indicate a slightly
smaller value for the fast fading limit of 14 /T, (i.e., the point where the required
E_, /Ny goes to infinity). In the slow fading limit (<, / T, 210), the required values
of E_, /N, from the COMLNK results are slightly above the theoretical curves as they
should be. In this limit where the error rate ratio is given by the AWGN formula and
the correlation between incorrect tone filters is negligible, the theoretical curves give
the ideal receiver performance. The COMLNK results are for an actual receiver im-
plementation with finite resolution and dynamic range in the signal plus noise voltage
samples, and a small implementation loss is indicated in the simulation results.
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4.3 FREQUENCY SELECTIVE FADING CHANNELS.

Frequency selectivity adds three significant complications to the analysis of ideal
demodulation error rates. First is the effect of the delay lock loop (DLL) which ideally
tracks with a non-zero offset in such environments. The second complication is that
demodulation error rates are quite sensitive to the coarseness of the sampling of the
channel impulse response function (CIRF). Ultimately both of these effects were in-
cluded in the theory because without them there was poor agreement between
COMLNK and theoretical results.

The third complication is that the analytic expressions for the demodulation er-
ror rates in frequency selective fading channels are very complicated in part due to
double integrals over the time and time-of-arrival properties of the channel. Without
the use of the program Mathematica® [Wolfram, 1996] to perform the necessary inte-
gration, the theoretical frequency selective fading results in this report would not be
possible, simply because of the large number of terms. COMLNK, of course, takes all
of this in stride.

To the authors’ knowledge the analytic demodulation error rates presented in
this section that include the effects of delay tracking and CIRF sampling have not been
published previously. Before these results were developed, the sensitivity of FSK de-
modulation error rates in particular to delay error and sampling was not well under-
stood, and perhaps never would have been understood to the degree now possible sim-
ply by studying simulation results alone.

As in the previous subsection, we will first discuss DPSK performance with in-
tersymbol interference and then discuss BFSK demodulation performance. This latter
case is sufficiently complex that we have not attempted to derive analytic results for M-
ary FSK performance in frequency selective fading channels, although this requires a
straightforward extension of the BFSK formalism. We believe that the BFSK case is
sufficient for COMLNK validation in frequency selective channels.

4.3.1 DPSK Performance.

Frequency selective fading does not directly impact DPSK demodulation if there
is an underlying direct sequence spread spectrum code. For such a waveform, fre-
quency selectivity only causes a loss in signal energy out of the code correlator to first
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order, but the output signal is essentially flat fading*. The magnitude of the code cor-
relation loss is given in Section 3, and the fast, flat fading performance of DPSK is
given in Section 4.2. Thus we consider only the case of DPSK demodulation without an
underlying PN code in this subsection.

In Appendix C we show that the ideal delay offset for DPSK demodulation with-
out a PN code is a small fraction of a channel bit period. Therefore we ignore delay
tracking in developing the ideal DPSK demodulation error rate. Thus when we com-
pare our analytic results to those of COMLNK, we run the simulation with the DLL
turned off and the delay offset fixed at zero.

With the assumptions of zero delay offset, no PN code, and a continuous channel
impulse response function, the DPSK demodulation error rate is

>=l_ 0% _ G%
2 4ot-R} 4oi-R}

(DPSK, Continuous Frequency Selective Fading)

(P,

[4

where

012=R3+R4[e“)‘+ L ) o§=2f1+R2+R4+y“

l_e—l A
_ R ]
6§=R3—R4e"+1_le_l) Gﬁ=2—lfl_—:—_%—R4+y‘ .

and A =27 f,T. The R integrals are

1 1-€
R = [d{TG(T) [dEp(TEYA-E-E)
0 0

1 4
Ry = [dCT G(TO)| dEp(TE) (- &)
0 4]

4 Stated another way, frequency selective effects on the PN code correlator occur with much larger values
of f, because of the much wider signal bandwidth in a PN system. Once the signal is despread, the
value of f; then is much larger than the data bandwidth. If the value of f;, were reduced sufficiently to
cause frequency selective effects on data demodulation, then the PN code correlator would fail com-
pletely.
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1 1-¢
Ry = [dCTG(TC) [de{p[TA+8)]+p[TA-E)]}A-(~-E)
0 0

1/2
R, = JdCTG(TQ{J dEEP(TE) +( I dt p(TE) + j dEp(TE)(1- é)]
1-¢

+JdCTG(TC>{Jd§&p<7§>+<1 ) Jd§p<7§>+ Jd&pa&)u &)}

1/2 1-¢

where G(') is the power impulse response function, and p(-) is the temporal autocorre-
lation function of the channel impulse response function. Closed form expressions for
these integrals for ™ and f~° Doppler frequency spectra are given in Appendix C.

As we have discussed before, the CIRF is necessarily sampled in both link simu-
lations such as COMLNK and in hardware channel simulators such as the DSWA Nu-
clear Effects Link Simulator. To simplify the equations in this case, we consider only
the case of slow, sampled frequency selective fading. For such fading the DPSK de-
modulation error rate is given by the expression

> 1 01 03
2 4\/02 (R - Rz 4\[04 (R - Rz)

(DPSK, Slow Sampled Frequency Selective Fading)

(P

e

where the sigma terms are
62 =R, +(R, —1+e‘7‘)R1 - (R, +e”7‘)R2
63 =(1+ R, )Ry = (1+2R; )R + R;(1+ " )R, +7"
o3 =Ry-(3+R +e MR +(2+ R, +e )R,

% =(1+R;)Ry = (3+2R, )R +(2+ R, + Rie" )Ry +77
For a sampled CIRF the R integrals are

R, =1-¢™
R —e")\.(l_e—N,)\.)
a 1-e™*
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e—MND _e—x'ND "(ND _1)6—?»/ND'

ND(l—e_MND)

Rl=

e ™Mo (1 +e MM ) - e_}‘[Ng +(1+2Np 2N )e ™Mo 4+ (N = 1) 72N ]
N3(1= o)

The integer N, is the number of delay samples per channel symbol, and N, is the
number of channel bits in the total CIRF delay spread (N; = N,/ Np rounded up to the
nearest integer).

R2=

These analytic results are compared with COMLNK simulation results in
Figure 4-15 for several values of the normalized frequency selective bandwidth, f,T,.
The COMLNK simulations were run with 14 /T, =300 to assure slow fading and with
two delay samples per channel bit period. The agreement between ideal DPSK de-
modulation error rate curves for a sampled CIRF (N = 2) and simulation results is
excellent. The reader should note, however, that we first computed the ideal DPSK
demodulation error rates for the continuous CIRF case and these theoretical results did
not agree at all well with the simulation results. It was this discrepancy that prompted
us to consider the effects of channel delay sampling on demodulation error rates.

There is a significant difference between ideal DPSK demodulation error rates
with a coarsely sampled CIRF and that for the continuous case. This difference 1s il-
lustrated in Figure 4-16 where we show the value of the channel bit energy-to-noise
spectral density ratio required to achieve a ten-percent demodulation error rate versus
foT,, for continuous and sampled CIRFs. Again there is excellent agreement between
the COMLNK results and the ideal sampled CIRF curve’.

* The COMLNK results in this figure plotted with solid circles only go down to f,T,, = 0.5 because they
were generated before we calculated the DPSK error rate with a sampled CIRF. The minimum fre-
quency selective bandwidth for the set of COMLNK runs from which these results were generated was
then determined by the continuous CIRF curve where finite values of E,, /N, are only possible for
foT, = 0.5. The COMLNK results plotted with open circles were generated after the ideal curve for the
sampled CIRF case was derived. This is an example of the manner in which detailed analyses and high-
fidelity simulations complement each other.
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Figure 4-15. DPSK channel bit error rates in slow, frequency selective fading.
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These results show that an ideal DPSK link can operate in frequency selective
fading channels with f,T,, 2 1. Sampling the CIRF with two samples per channel bit
gives the appearance that a DPSK link can operate in frequency selective fading chan-
nels with values of f;7;, about 1.5 times smaller than the lower limit with a continuous
CIRF. Thus both COMLNK simulation results and hardware test results using a fre-
quency selective channel simulator may be somewhat optimistic relative to the per-
formance of a DPSK link in a continuous frequency selective fading channel.

The cure for the difference between demodulation results with continuous and
sampled CIRFs is to increase the number of delay samples per channel bit period. The
price to be paid for this is increased execution time, primarily in the convolution of the
channel with the transmitted modulation.

Rather than indiscriminately increasing the value of Nj in an attempt to achieve
COMLNK results (or hardware test results) closer to those for a continuous CIRF, we
recommend that users just be aware of the effect of channel delay sampling. Only when
considering DPSK link performance near the threshold indicated by the results in
Figure 4-16 and only when a factor of 1.5 or so in the minimum value of f,T,, makes
some difference in conclusions inferred from simulation or test results, should one in-
crease the value of Np,.

4.3.2 BFSK Performance with Hopping.

There are two fundamental characteristics of frequency selective fading that
complicate the problem of analytically computing the FSK demodulation error rate. As
pointed out in Section 2 of this report, the two-frequency mutual coherence function
varies inversely with frequency difference. As a consequence, the correlation between
the signal components at the output of the tone filters is not small as is the case for fast
fading, and one is left with the problem of dealing with M mutually correlated random
variables to compute the error rate. A further complication is that the two-frequency
mutual coherence function is complex, so the cross correlation of the tone filter outputs
is also complex. This effectively doubles the analytic calculations necessary to compute
the correlation coefficients. Thus analytic results are practical only in the case of BFSK
modulation. As we will show, the BESK case is sufficiently tedious mathematically that
there is little reason to attempt to develop analytic results for higher-order FSK sig-
naling, although such results could, in principle, be obtained. Furthermore, the BFSK
case is sufficient to achieve our goal of COMLNK validation. Note that none of these
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analytical difficulties affects COMLNK, which can readily 31mulate M-ary FSK under
fast, frequency selective fading channel conditions.

The block diagram in Figure 3-2 of Section 3 is for FSK with frequency hop-
ping, although hopping can easily be disabled. Frequency hopping provides two key
advantages to an FSK communications link. The primary advantage is protection from
jamming, whether hostile or inadvertent. A side benefit, if the hopping rate equals or
exceeds the modulation symbol rate, is to provide protection from intersymbol inter-
ference in frequency selective fading channels. In this section we only consider the case
where the hopping rate is equal to the symbol rate. If the hopping rate is faster than the
symbol rate, then signal energy from multiple hops per symbol must be non-coherently
combined, which adds considerable complexity to the analysis (although readily treated
by COMLNK). If the hopping rate is slower than the symbol rate, then signal energy
from previous symbols within a hop can interfere with the on-time symbol. This ap-
proaches the case without hopping considered in the next subsection.

Even ignoring delay tracking, the BFSK demodulation error rate for general
time and frequency selective fading is extraordinarily tedious to calculate analytically®.
Thus we have chosen to develop analytic demodulation error rate expressions with
non-zero delay tracking error only for slow, frequency selective fading and to develop
such expressions with zero delay tracking error for fast, frequency selective fading.

Results for these two cases are outlined below. The mathematical details are in Appen-
dix G.

The BFSK channel bit error rate is computed analytically from the mean energy
at the outputs of the two filters and the voltage cross correlation coefficient. For
BFSK, the transmitted frequency is +Af/2 (relative to the carrier frequency), and
without loss of generality we assume that the +Af/2 tone is transmitted. The normal-
ized signal contribution E, (E, =1 in the limit of flat fading) to the mean output en-
ergy of the correct filter corresponding to the transmitted tone is, for a slow fading
continuous channel impulse response function,

® It is important to distinguish between analysis and simulation when discussing complexity. Analytic
results can be obtained only under rather limited conditions due to extraordinary mathematical complex-
ity that must be faced each time that a calculation is performed. For a first-principles simulation such as
COMLNEK, complexity was faced once in structuring and coding the program. Thereafter, simulations
of a wide range of systems and channels are readily performed.
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E, = [TG(TQ)A*[(~%p]d{  (Slow Fading, Continuous CIRF)
0

where 1, =1, /T is the normalized delay offset, T is the modulation symbol period
(which is also the channel bit period for BFSK), A() is the triangle function, and G()
is the power impulse response function (Eqn. 2.8). When the CIRF is sampled, the de-
lay integral reduces to a sum over the delay bins, and the slow fading signal energy at
the output of the correct tone filter is

N.-
= ¥ PA’[i/Ny-1,]  (Slow Fading, Sampled CIRF)
i=0

where P, is the mean power in the i" delay bin (Eqn. 2.14), Np is the number of de-
lay samples per symbol (N, = T/At where At is the delay bin size), and N, is the
number of delay samples (Eqn. 2.13). Similarly, the slow fading normalized mean sig-
nal energy at the output of the other tone filter (corresponding to a ~Af/2 tone) for
the continuous CIRF case is

4 % . A
=—ZITG smz[%(oM(‘cD——C)]dZ; ]
Oy o
(Slow Fading, Continuous CIRF)

where w,, =2nAfT and Af T is the normalized tone spacing (a positive integer). Note
that E_ =0 in the limit of flat fading. For a sampled CIRF this equation becomes
4 N.-1
E.=— ¥ Bsin?[Loy (i, -i/Np)]  |i/Np—-1p|<l

OJM i=0
(Slow Fading, Sampled CIRF)

The cross correlation of the voltage out of the two filters is complex because the two-
frequency mutual coherence function for trans-ionospheric channels is complex. We
show in Appendix F that the noise out of the two filters is uncorrelated for orthogonal
signaling and we make the reasonable assumption that the noise is uncorrelated with the
fading, so only the signal contributes to the cross correlation. For slow fading, the
complex cross correlation coefficient is
_1\AfT+1 ©° ) R
= .2_(__(1’))M—£TG(TQ)A[C—%D]sin[%coMyc—%D[]e’fAfT(C”D)dz; :

(Slow Fading, Continuous CIRF)
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) P, A[i/Np—%p]sin[40y|i/Np _%DI]e~jAfT(i/ND+%D) .

(Slow Fading, Sampled CIRF)

For the exponential form of the power impulse response function used in this report,
the integrals for the continuous CIRF case can be obtained in closed form (see Appen-
dix G for these results). For the sampled CIRF case, the above expressions are evalu-
ated numerically using the expression in Section 2 for P.

The BFSK channel bit error rate in slow, frequency selective Rayleigh fading is

1 E —-E_
<Pe>=_2-: 1- = 2 2 2 :
\/(E+ +E_+2/y)" —4(Ch+C7)

(4.5)

(BFSK, Slow Frequency Selective Fading)

where v = E_, / Ny is the channel bit energy-to-noise spectral density ratio in the ab-
sence of fading, and Cy and C,; are the real and imaginary parts of the cross correla-
tion coefficient, respectively.

The expressions for the BFSK demodulation error rate in time and frequency
selective fading are sufficiently complex that we have not included delay-tracking ef-
fects in this calculation. Without loss of generality, we again assume that the +Af/2
tone is transmitted. The normalized signal energy at the output of the filter corre-
sponding to the transmitted tone in time and frequency selective fading is

1 1-¢
E, =2 d{TG(TC) [dEp(TE)(1-(-E) ,  (Fast Fading, Continuous CIRF)
0 0

where p(-) is the temporal autocorrelation function of the fading. The signal energy at
the output of the other tone filter reduces to the deceptively simple form

1 1-¢
E_=2[d{TG(TE) [dEp(TE)cos (&)1 -§ - &)
0 0
(Fast Fading, Continuous CIRF)

The deception is that closed form expressions for E_ for a continuous CIRF channel
with an f -6 Doppler frequency spectrum involves a very large number of terms. After
considerable manipulation, the real (Cy) and imaginary (C;) parts of the cross corre-
lation coefficient of the two tone filters reduce to
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AT

Cp =~ (1) STy RO

(_DAfT ]
[TG(TE) Rey (Gl
0

(Fast Fading, Continuous CIRF)

Cl=
M

where the time integrals are

Rer(§) =[1+ cos(e,,8)| Rs(€) +sin (0,/8) [Rp (C)+ R (C)]

Rer(§)=[1-cos(@ %) ][ Ry (€) + Re(§)] +sin(,,8) Rs (3)

and the integrals Rg(), Rc(0), and R, (L) are defined as

1-¢
Ry(©) = [p(TE)dE
0

1-¢ 1-¢ '
Rs(8)= IP Jsin(@y€)de  Rc©)= JP )eos(wy,E)dE

At this point we have a formal solution to the problem of the BFSK demodula-
tion error rate in fast, frequency selective fading. To obtain an analytic answer, how-
ever, one must simply perform the indicated integrals. Therein lies the problem. For
the f =S form for the temporal autocorrelation function and the simple exponential
form for the power impulse response function, the analytic expression for E_ has more
than 80 terms unless care is taken to collect together similar factors. The expressions
for Cy and C; are even more unwieldy. The analytic results are given in Appendix G
for interested readers.

To compute the BFSK error rate for a sampled CIRF we make the assumption
that the channel is sampled with sufficient temporal resolution. In COMLNK the chan-
nel is sampled with nominally 40 samples per decorrelation time, which has been
shown to accurately reproduce the temporal statistics of the fading [Dana, 1988; Dana,
1993]". When properly sampled in time, the & integrals in the expressions above are
insensitive to the time sample size, so the difference in these integrals for continuous or
sampled CIRFs is the delay variable that is either continuous or discrete.

7 The number of samples per decorrelation time is an input to COMLNK via the channel data menu. The
default value is 40 samples per T,.
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_ The extension to the sampled CIRF case simply involves replacing the delay inte-
grals with sums over the delay samples. Thus the signal contributions to the tone filter
output signal energy are

Nl 1=

E,=2r" B [pT&)(1-i/Np-8)dt
[::01 1 '?N (Fast Fading, Sampled CIRF)
p—l 1=t iNp .

E.=2r" Y P JP(Té)COS(wMé)(l—i/ Np-§&)dE
i=0 0

where r is the mean signal amplitude, and Ny =T/ At is the number of delay samples

per symbol. Similarly, the real and imaginary parts of the cross correlation coefficient
are

2 (=) Mol
Cr=-r"S—0r 2 P Icr(i/Np)
e i= .
0 (Fast Fading, Sampled CIRF)
¢, = n
=T M Z(,) i CI(’ D)

These expressions are evaluated numerically using the analytic expressions for the time
integrals derived in Appendix G. Once values for E,, E_, Cg, and C; are calculated,
the expression in Equation (4.5) is used to evaluate the demodulation error rate.

The first set of COMLNK results we generated for comparison with these theo-
retical results is plotted in Figure 4-17. The ideal BFSK results in the figure are for a
sampled CIRF with two delay samples per symbol (the same as COMLNK) and with
the indicated ideal delay offset, T, /T,,. Because we knew from our theoretical calcu-
lations that the ideal delay offset is not zero in frequency selective fading, we generated
these simulation results with an active delay-lock loop. Indeed the average COMLNK

DLL tracking errors for these cases are very close to the ideal delay offsets given in
the figure.

The agreement between the COMLNK results and the ideal curves is poor at
large values of E_, / N, but good at small values. The reason for this discrepancy is the -
active DLL. In Appendix G we show that the irreducible BFSK error rate is very sen-
sitive to delay offset, and an active DLL with a time-varying delay estimate effectively
averages the error rate over a distribution of delay offsets, thereby washing out the de-
pendence of the irreducible error rate on delay offset.
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Figure 4-17. BFSK channel bit error rates with hopping and an active DLL in fast,
frequency selective fading.
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Thus the COMLNK results in Figure 4-17 are monotonically decreasing as
JfoT., increases whereas the “ideal” results are not monotonic at large signal-to-noise
ratios. This is an example of a situation where “ideal” theoretical results will likely
never be seen in a real receiver, making these analytic results somewhat of academic
interest beyond their utility for simulation validation.

The non-monotonic behavior of the irreducible BFSK error rate with f,T, and
ideal delay offset is only seen in the sampled CIRF results given in Appendix G. This
behavior results because maximizing the signal energy at the output of the correct tone
filter, which is what a DLL is attempting to do, does not necessarily minimize either
the signal energy out of the other tone filter or the cross correlation coefficient in fre-

quency selective fading. Thus the ideal delay offset does not necessarily minimize the
demodulation error rate.

The problem of comparing COMLNK results with an active DLL to ideal BFSK
error rates with a constant delay offset is easily fixed by setting the COMLNK delay
offset to a constant value and turning the DLL off. This is accomplished via input, and
the results are plotted in Figure 4-18 for several values of f;T,.

However, there is yet another problem in comparing ideal and simulation error
rate results. The simulation channel model for frequency selective fading and hopped
FSK modulation currently limits the decorrelation time to not exceed a value of three
times the hop period, so that quasi-independent channel samples will be obtained at dif-
ferent hop frequencies. The channel model reverts to the input value of 1, if it is
larger, when the channel is flat fading or when it is selective over the modulation
bandwidth. Our theoretical results are either for a slow fading channel with non-zero
delay offset, or for a fast fading channel with zero delay offset.

Thus two types of “ideal BFSK” results are plotted in the figure. For f,T,, < 0.3
and for fyT,, =3 slow fading ideal results with the indicated delay offsets are plotted.
For f,T,, =1 the fast fading ideal BFSK result with ©5, /T, =0 is plotted. Note that
the ideal delay offset for this case is T /T, = 0.011, which is essentially equal to O.
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When the delay offset in COMLNK is fixed at the ideal value for the sampled
CIRF, the agreement between the simulation and ideal results is remarkable. The
simulation results for f,7,, = 0.03 and 0.1 (plotted with open circles to distinguish
them from other cases) cross over at large signal-to-noise ratios as do the ideal curves.
In addition, the simulation results for f,T., =1 agree very well with the ideal fast fad-
ing curve, and the simulation results for f,T, =0.03 and 3 agree very well with the
ideal slow fading curves for these cases. Evidently, for a tone spacing of 3, the effect
of fast fading on the demodulation error rate diminishes as f;, is reduced.

We believe that the small differences between simulation and ideal results for
foT, = 0.1 and 0.3 at large values of E_, / N, are primarily due to the effects of fast
fading that are not in the ideal curves with t,/T,, > 0. To verify this conclusion we
reran the COMLNK cases with the delay error fixed at zero. These results are plotted
in Figure 4-19 and are compared with the ideal fast fading curves. Here the agreement
between COMLNK results and the ideal curves is excellent.

For E_ /Ny <20 dB or so, the frequency selective error rate curves in either
Figure 4-18 or Figure 4-19 are essentially versions of the flat fading curve shifted to
the right by a loss in signal energy at the output of the correct tone filter. Thus for er-
ror rates above 0.01 or so, one can estimate the frequency selective BFSK demodula- -
tion error rate by applying a matched filter loss to the flat fading error rate curve.

4.3.3 BFSK Performance without Hopping.

The frequency selective fading performance of a BFSK demodulator without
frequency hopping differs considerably from the case with frequency hopping. Without
hopping, energy from previous symbols is not attenuated by the front-end downcon-
verter and bandpass filters of the receiver because all symbols have the same carrier
frequency. Thus there is intersymbol interference (ISI) as energy from previous sym-
bols interferes with the demodulation of the on-time symbol.

A functional block diagram of a non-coherent binary frequency-shift keying
(BFSK) receiver is shown in Figure 3-2. The block diagram in this figure is for BFSK
with frequency hopping, but the hop synthesizer is disabled here.
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In Appendix H, we assume that the AGC and AFC tracking loops are operating
perfectly and investigate the ideal delay offset in frequency selective fading. Our re-
sults show that this ideal offset is a small fraction of a modulation period. Thus we ig-
nore delay tracking in developing expressions for the BFSK demodulation error rate.
To simplify the equations somewhat, we also assume slow fading. The resulting BFSK
demodulation error rate is sufficient for COMLNK validation, which of course can
treat much more complex cases.

Again we assume, without loss of generality, that the +Af/2 tone was transmit-
ted during the on-time tone period. The normalized signal contribution to the output
energy of the correct tone filter is then given by the following expression derived in
Appendix H:

E,=Ry— R +1Ry+Rs; +1Rsy — Rs3+45,(Ry — R + Ry + Rg; + Ry 5 ~2Rs;)

where

The I integrals in the expression for E, and three other integrals that occur in
the expressions for the mean signal energy out of the other tone filter and the cross
correlation coefficient are

Ry = jTG(TC) dg=1-¢*
0

1 _ ot
R =jrg(7g)gd§=l__(7i:£l)_

0
1 2-(7@+2x+2)e‘7‘

R, = JTG(TC)CZG’C = 22
0

_ (_I)AfT 1 ) _ (—I)Aka(l —e—l)
Rg, = P TG(TC)sin(w,8)dl = el
2(1-¢7)

VY
A+ oy

1
Rg, = % { TG(TC)sin? [$ o, 6)dC =
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(=D¥T | (YT (1-e) - (22 + 0 )e ]

Rs3= ; {TG(TQ)Csin(wMC)d& (lz +®i4)2
3 (_I)Ale a1
R4 = " J TG(TC)(1-28)sin [7@MC]dC
0

(1Yo, [x(xz rol)([1+e™)-2(307 + ol )1 —e"‘)]

2122 +(oﬁ4)2

Rss =] TG(TC){(1-C)sin(w L) dl
0

=2mM[x(x2 + ol )1+e™)- (322 —co;"w)(l—e-x)]

(73 +co,2w)3

1

R¢ = [ TG(TC)L (1 - {)cos(w ) dC

0
MM —of, )1+ e7) =20 (W =30} )(1-7")

(k2 + cofw)3

where closed form expressions for the integrals are obtained using the exponential
power impulse response function [Eqn. 2.8]. The latter three integrals are used in sub-
sequent expressions. When the CIRF is sampled, the delay integrals in these expressions
are replaced by delay sums, and the R integrals are all of the form

Np-1
Ry= > BIx({=i/Np)
i=0

where I ({=i/Np) is the function in the continuous CIRF integrals that multiplies the
normalized power impulse response function, TG(TC) evaluated as the discrete nor-
malized delay samples i/ N,.

The normalized mean signal energy at the output of the other tone filter is

E_=%1Ry+3Rsy - Rs3+35, (Ro ~ R+ R, +Rs) + R “2Rs,3) ,
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and, after considerable algebra, the real and imaginary parts of cross correlation of the
two tone filters reduce to

The BESK demodulation error rate without hopping in slow, frequency selective
Rayleigh fading is again given by the expression in Equation (4.5).

The final comparison of COMLNK results with ideal demodulation error rate
curves is shown in Figure 4-20 for BFSK without hopping in slow, frequency selective
fading channels. All results in this figure are for the delay offset equal to zero. Without
hopping, frequency selective fading produces ISI, and the irreducible demodulation er-
ror rate approaches 50 percent for small values of f,7,,.

Excellent agreement is seen between the simulation results and the ideal error
rate curves, validating the frequency selective channel model and BESK demodulation
algorithms within COMLNK.

4.4 SUMMARY.

- The process of comparing COMLNK results with ideal demodulation error rate
curves has both validated the simulation and produced a number of new insights into
the effects of fading on digital communications. In this process, we have generated new
analytic results for demodulation error rates in fast and/or frequency selective fading.

The new insights on the performance of digital communications links in fading
channels include the following:

e There can be a significant difference between the ideal delay offsets and de-
modulation error rates in sampled and continuous frequency selective fading;

e The channel delay sampling in the current version of COMLNK may be too
coarse for some applications involving small frequency selective bandwidths
combined with large signal-to-noise ratios;

o The current DSWA specification for the total signal power in the delay grid
should be increased from 97.5 percent to 99.9 percent.

99




10°

10

102

103

Channel Bit Error Rate

DFT Demodulation
T AfT=3
No Delay Tracking (z, = 0)

10* [ Slow, Freq. Select. Rayleigh Fading:

F T T, >> 1
..... Sampled CIRF (N, = 2)

- -—— Ideal BFSK (Flat Fading) _
--------- Ideal BFSK (Frequency Selective Fading) ®

[ Ideal BFS 8\
R S S S S S S S N B
-10 0 10 20 30 40 50

Channel Bit Energy-to-Noise Density Ratio, E_, /N , (dB)
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Now that the demodulation performance of COMLNK has been validated against
analytic models and a limited set of test data for phase-shift keying and frequency-shift
keying modulation in fast, frequency selective fading channels, the next obvious com-
parison is that of the output of an error correction decoder with analytic results. Unfor-
tunately, analytic results for Viterbi decoders have been limited to performance bounds,
not actual decoded bit error rates. Furthermore, the only simulation in COMLNK occurs
in constructing the digital samples at the output of the analog-to-digital (A/D) converter,
and this part of COMLNK has been verified. After the A/D converter, COMLNK is an

emulation of a digital communications receiver and is validated by direct comparisons
with hardware.

There is a reasonable amount of test data available to compare with COMLNK
simulation results for processes that occur after the demodulator. An example is the L3 P
receiver scintillation test program conducted with the NELS channel simulator circa
1982 [Bogusch and Guigliano, 1982; Dana, 1995c]. In Figure 4-21 we plot the meas-
ured and simulated Viterbi decoder transfer function (i.e., the output decoded bit error
rate versus the input demodulated symbol error rate) for two fast fading channels. The
demodulated channel bit error rate for these two channels is plotted in Figure 4-21. The
solid line in the figure is just a curve fit to the COMLNK data points, generated because
it is not possible to analytically describe this transfer function. Again there is remark-
able agreement between the COMLNK simulation results and the test data.
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APPENDIX A
DEMODULATION PERFORMANCE OF COHERENT PSK (APSK)

A functional block diagram of a differentially encoded, coherently demodulated
phase-shift keying (APSK) receiver is shown in Figure A-1. The data are differentially
encoded at the transmitter so that the inherent n-phase ambiguity in suppressed-carrier,
coherent PSK demodulation can be resolved at the receiver. A Costas loop is used to
track signal phase, so ideally the entire signal is in the in-phase (/) channel. Thus only
this channel is used for data demodulation. A delay lock loop (DLL) is used to keep the
receiver timing aligned with the bit edges in the received signal. The automatic gain
control (AGC) tracking loop keeps the signal within the dynamic range of the analog-

to-digital converter and keeps the signal amplitude at the design values of the DLL and
Costas tracking loops.

The APSK demodulation metric is
m=L 1y

where I, is the K sample of the in-phase voltage. When the transmitted signal phase is
unchanged from the k-1 to k symbol period the sign of # should be positive. Con-
versely, a negative value of / indicates a change in the transmitted phase.

After downconversion, the received PSK signal plus noise in a non-fading chan-
nel is given by the expression

zZ(6) = [rej((P"'(Po) + n(z)]e—j(p" ,

where r and ¢ are the signal amplitude and phase due to propagation, respectively, @,
is transmitted PSK phase (¢4 =0 or 7 randomly), and ¢, is the phase correction gen-
erated by the Costas tracking loop.

The complex voltage n(t) is additive white Gaussian noise (AWGN) with the
usual properties:

(n(#))=0
(n()n(1,)) =0 ,
(n(r)n" (1)) = Ny 8(t; = 1,)
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Figure A-1. Block diagram of a coherent PSK receiver.

where N, is the one-sided noise power spectral density. The middle of these equations
results because the real and imaginary parts of n(¢) are uncorrelated. The noise contri-
bution to z(z), n(t)e /¢, has exactly the same statistical properties as does n(t).

Assuming that the Costas phase tracking loop is operating perfectly (i.e., the loop
tracks the signal phase due to propagation but not the transmitted modulation so
0, = ©), the received signal contribution to z(z) is just £r.

The voltage z(?) is integrated over a sample period (equal to one-half the symbol
period T in this case) to produce the / and Q samples. The two samples per modulation
period are coherently summed to give the signal used for demodulation:

1 (k+1/2)T+1p
Z, == Jzwar ,

T (k-1/2)T+1,
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where Tp is the DLL delay tracking error, and I, and O, are the real and imaginary
parts of Z,, respectively. For this calculation we will assume that the delay tracking
error is small compared to T and can be ignored'. The real part of Z, is then

I, =£r+Re(N) , (A.1)
where

(k+1/2)T ,
N, = e [ n@)e™ % ar
(k=1/2)T
is the sampled noise. The noise contribution to I, Re(N,), is a zero-mean, normally
distributed random variable with variance N, /(2T). An expression similar to Equa-
tion (A.1) holds for I _;.

Assuming that the transmitted modulation is unchanged, the channel bit (or de-
modulation) error rate is given by the probability that 7 is negative. Because the noise
from one sample to the next is uncorrelated and independent, the probability density
function of m can be obtained from the formula for the product of two independent
random variables. Integrating the resulting expression over negative values yields the
familiar expression for the APSK channel bit error rate in AWGN:

P, =erfc[\[E, I Ny [{1-Lerfc[VE, TN, |}
where E_, / Nj is the channel bit energy-to-noise spectral density ratio (r* T/ N,), and

erfc(-) is the complementary error function:

—j—:fe“tzdt .
Tc X

In very slow fading, slow enough that the Costas loop maintains phase lock on
the signal, the average demodulation error rate is

erfc(x) =

' Ideally, the tracking thresholds are well below the data demodulation threshold, so tracking errors are
small whenever the demodulation error rate is less than 50 percent. However, when a modified Costas
loop is used, as in most modern receivers, then even in a well-designed receiver the tracking loop
threshold will be closely related to the demodulation threshold, as discussed by Bogusch [1990].
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(B)=[P.(yS)F(S)dS |
0

where v is the nominal value of E_, /Ny, and f(S) is the probability density function of
the fading power S (with (S) set to unity). For Rician fading, fS) is given by Equation
(2.2b) with §j set to unity. The resulting integral must be done numerically. However,
a closed form expression is available for Rayleigh fading:

» 1 1t—2tan'l(1/l+y_l)
< e>~5- 14y '

The APSK channel bit error rate for Rician fading is plotted in Figure A-2 for
several values of the scintillation index (S, = 0, 0.25, 0.5, 0.75, and 1). These curves
show that an additional 35 dB of signal power is required to maintain a 107> error rate
as the channel varies from non-fading to slow Rayleigh fading.

(Rayleigh Fading)

For Rayleigh fading channels with finite decorrelation times, APSK demodula-
tion performance is limited by the ability of the Costas loop to maintain phase lock on
the signal, as shown by COMLNK results plotted in Figure A-3. Here the channel bit
period T, is equal to the symbol period 7. For finite values of 7, /T, and large values
of E,., / Ny, the channel bit error rate approaches an irreducible value determined by
the frequency of loss-of-lock or phase slip events.

Increasing the bandwidth B, of the Costas tracking loop, thereby making the
loop more responsive to the phase fluctuations caused by fading, can reduce the fre-
quency of phase slips. However, a loop that is too responsive will begin to track the
PSK modulation, wiping out the desired data in the process.

Because APSK demodulation performance in fast fading depends on the Costas
loop tracking performance, which is highly non-linear, we do not believe that it is pos-
sible to compute ideal fast fading performance analytically. This renders APSK modu-
lation useless for analytic validation of any simulation in fading channels. However,
differentially coherent PSK demodulation (DPSK) is much more robust in fast fading
because it does not require phase tracking, and for this demodulation technique fast
fading analytic results are available.
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APPENDIX B

DEMODULATION PERFORMANCE OF DIFFERENTIALLY COHERENT
PSK (DPSK) WITH AN UNDERLYING SPREAD SPECTRUM CODE

A functional block diagram of a differentially coherent phase-shift keying
(DPSK) receiver with an underlying direct sequence (DS) pseudo-noise (PN) code 1s
shown in Figure B-1. The transmitted data are differentially encoded so that differen-
tially coherent demodulation can be used. Thus the frequency but not the phase of the
received signal needs to be tracked. This eliminates the primary failure mechanism of a
coherent PSK receiver in a fading channel — loss of phase lock.

The receiver has two code correlators (labeled early/late and on-time): one for
the delay lock loop (DLL) and one for all other functions. Delay tracking is accom-
plished by measuring the code correlator output energy with the PN code either one-
half chip early or one-half chip late relative to that in the on-time code correlator. The
DLL attempts to equalize the energy of the early and late measurements.

In this appendix we show that, because of the underlying PN code, time selective
and frequency selective fading effects are decoupled in the output of the code correla-
tor, thereby reducing the demodulation problem to that of DPSK performance in fast
fading with a code correlator loss caused by frequency selective fading. The code cor-
relator loss is determined by the severity of the frequency selective fading and the
DLL tracking performance.

In COMLNK or in hardware channel simulators the channel impulse response
function (CIRF) must be sampled in time and delay. Our results show that if the sam-
pling in time is sufficient to accurately reproduce the temporal statistics of the fading,
then the time sampling is also sufficient to accurately measure DPSK demodulation
performance. We also show that the optimum delay offset in frequency selective fading
is quite sensitive to the delay sampling interval, and in this dimension the channel sam-
pling in either a simulation or a hardware channel simulator can be rather coarse.

In Section B.1 of this appendix we derive the output of the code correlators in
terms of the channel impulse response function and the PN code autocorrelation func-
tion to show the separation of time and frequency selective fading effects. Next the de-
lay tracking offset of an idealized delay tracking loop is computed for both continuous
and sampled channel impulse response functions. The ideal delay offset of the re-
ceiver’s PN code is between zero and one chip late, depending on the severity of the
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frequency selective fading, relative to the ideal position in a non-fading or flat fading
channel. Then the loss of signal energy at the output of the code correlator is com-
puted. DPSK demodulation performance in non-fading, slow fading, and fast fading
channels is computed in Section B.2. New results on the effect of time sampling of the
channel on DPSK demodulation performance and on signal energy at the output of the
code correlator are presented in Section B.3. We show that the demodulation perform-
ance is insensitive to the “coarseness” of the time sampling. However, the output signal

energy is sensitive to the temporal sampling interval, but only for fast fading where the
demodulation error rate is near 50 percent.

B.1 CODE CORRELATOR OUTPUT.

Under frequency selective fading conditions, the code correlator in a pseudo-
noise direct sequence spread spectrum (DS/SS) receiver loses signal energy because of
the time-of-arrival jitter or delay spread of the received signal. Signal energy that ar-
rives more than one chip late relative to the local PN code generator (or more than one

chip early if the code delay tracking loop is late by a chip or more) will not correlate
with the local PN code and will be severely attenuated.

B.1.1 Fading Signal Out of PN Code Correlator.
Consider a transmitted PN waveform:

m(z)=2mkn[L-—k]

k Tc

where m, =%1 pseudo-randomly is the PN chip modulation, and T is the chip period.
The rectangular function I'l(x) is defined as

1 forlxl<i

IMx)= o
0 otherwise

An ideal PN sequence has a triangular autocorrelation function:

Limit 1772 .
T—eT [m(tym”™ (1 +v)dt = A(t/ T¢)
-T/2
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where

1-lxl forlxl<l

Alx) = { L.
0 otherwise
For binary phase-shift keying modulation considered in this appendix, the in-
formation bearing transmitted signal is ¢’® m(r) where @, 1s either O or . By writing
the transmitted signal as a product of a phasor ¢’® and the PN sequence, it is assumed
that the phasor varies slowly relative to the duration of a chip, or equivalently, that the
number of chips in a channel bit modulation period is large.

The signal at the mput to the PN code correlator is the convolution of the chan-
nel impulse response function and the transmitted modulation:

u(ty=rel® [ m—t)ht,v)dt
0
where r is the received signal amplitude. This received signal is then correlated with a
locally generated version of the transmitted PN sequence and sampled. The complex
signal at the output of the code correlator is a function of time and the delay error of
the local PN code generator relative to the received signal PN code, Tp:

t+T5/ 2+,

st = [ (E-tp)uEdE |

S =Ty /241,

where T is the code correlator sample period, and m’ (¢) is the locally generated PN
code. Subsequently, we will assume that the delay error is on the order of a chip pe-
riod or less and thus is a small fraction of the sample period (i.e., |Tp|<<Ts). There-
fore edge effects can be ignored in the limits of integration. Upon substituting the ex-
pression for the input signal, the output signal becomes

. oo t+75/2
s(z,rD)=reJ“’°jd¢i [dEnEm*E-1p)mE-1) . (B.1)
0 TS:—TSIZ

We are implicitly assuming that the receiver is tracking the frequency of the received
signal well enough that any residual frequency error does not result in significant
phase rotation during a sample period. This also implicitly assumes a slow fading
channel.
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The channel impulse response function occurs in the second integral of this
equation. Without this term in the integrand, the second integral is just the triangle
function. For a moment consider that the channel decorrelation time 7 is large com-
pared to the sample period Ts. Then A(E, 1) is slowly varying in time over the sample
period and can be pulled out of the second integral. As long as there are a large num-
ber of chip periods within a sample period (say 100 or more), then the second integral
is essentially the triangle function, and the output signal can be written as

st,1p)=re!® [ht, DA -DdT . (19> Ts>>1p) (B.2)
0

The fading statistics of the sampled signal at the output of the code correlator
can now be determined. Under Rayleigh fading conditions, the channel impulse re-
sponse function is a complex, zero-mean, normally distributed random process. Thus

the integrand and the integral are also complex, zero-mean, normally distributed ran-
dom processes.

For convenience in further developments, the integral in Equation (B.2) is de-
fined as the combined channel and code correlator response function, ¢ (2,7p):

hettp)= [RLTAC, -T)dT . (B.3)
0

Under the turbulent model, the signal at all delays varies at the same rate, so the fading
rate of the code correlator output is independent of the value of Tp.

Before proceeding with the calculation of the code correlator output energy, we
need to consider the effects of fast fading on the output signal. When the decorrelation
time is comparable to or less than the modulation period T (also referred to in this re-
port as the channel bit period) of the transmitted DPSK signal, we can imagine super-
sampling the output of the code correlator at faster and faster rates until the sample
time is less than 1, and Equation (B.3) applies. The number of super-samples per
channel bit period is just n=T/T. These n super-samples are then coherently summed
to obtain the code correlator output voltage for the k* channel bit period:

k+ni2-1

1
Sk(TD):"‘— ZS(ZTS’TD) .
R i=k-ni2
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In the limit that the number of super-samples per channel bit is large, this summation
can be replaced by an integral over the channel bit period:

. k+1/2)T
Si(tp)=re’® = [he(t,tp)dr (B.4)
k-1/2)T

where @, is the transmitted DPSK modulation during the k" channel bit period.

When the fading is slow, the decorrelation time is large compared to T. In this
case the output signal is just rel® hc(kT,7 ). However, when the fading is fast (i.e.,
when T, < T), the combined channel and code correlator response function will vary
within the integral, and the full signal-to-noise ratio gain of the PN code is not real-
ized. The effects of fast fading on DPSK demodulation performance are computed in
Sections B.2 and B.3.

The point of this digression is that frequency selective fading effects can be
treated separately from fast fading effects as long as the number of chips per decorre-
lation time is large. This is not a very restrictive limitation because the real question in
which we are interested (Does the link operate?) is easy to answer when T, is compa-
rable to T. (It does not.) The loss in code correlator output signal energy due to fre-
quency selective fading is computed from Equation (B.3). When there are a sufficient
number of chips per sample, this loss does not depend on the integration period of the
code correlator per se, but only on the time-of-arrival jitter relative to the duration of
a chip. The number of chips per sample must be large enough that the autocorrelation
of the PN code is a essentially a triangle. After the received signal is multiplied by the
locally generated PN code to remove the spread spectrum modulation, the resultant
“de-spread” voltage is flat fading because signal energy arriving early or late by £1/2
chip or more is severely attenuated by the correlation process. This de-spread signal,
with mean energy reduced by the code correlator loss, is then coherently integrated
over the channel bit period. The fast fading loss of the signal is computed from Equa-
tion (B.4), and depends on the decorrelation time of the de-spread signal relative to the
channel bit period.

A limitation of separately evaluating the effects of frequency and time selective
fading is that we implicitly assume the turbulent model by ignoring the effect of the
code correlator on the decorrelation time of the output. This is not a fundamental
limitation because one could determine the decorrelation time of h.(2,7p) as a func-
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tion of T, and f,. However, this level of detail is more appropriate for COMLNK
than it is for an analytic model.

B.1.2 Ideal Delay Offset and Code Correlator Loss.

So far, we have considered only continuous channel impulse response functions
(CIRFs). However, in COMLNK and in hardware channel simulators the CIRF is sam-
pled in time and delay. For the moment we will assume that the CIRF is sampled in
time with sufficient resolution that temporal sampling effects are negligible'. The sam-
pling in delay, however, can be relatively coarse, and sampling effects can not be ne-
glected in comparing analytic and COMLNK results. For the DS/SS systems considered
here, the effects of sampling are seen primarily in the performance of the DLL. Both
sampled and continuous CIRFs are considered in calculating the ideal delay offset in
frequency selective fading.

In a DS/SS receiver early and late signal samples are generated by code correla-
tors® using an early and late version of the locally generated PN code. If we assume
that the receiver advances or retards its locally generated PN code to match that of the
received signal and integrates over a fixed sample period Ty, then the early, on-time,
and late signal samples out of the code correlators can be written as

1 t+T5/2

Sp=m— [m E=1p+ T/ Du®)dt
Tst -Ts/2

1 r+TS/2*

So=7— [m E-1p)u®)dt
Ts 1=Tsl2
1 t+Ts/2

Jm (€=1p-Tc 1 2u®)dt
TSI -T2

L

' Dana [1988, 1993] discusses the requirements on the temporal sampling necessary to achieve accurate
temporal statistics of the fading (e.g., mean duration and separation). The effects of temporal sampling
- on signal power and DPSK demodulation performance are discussed in Section B.3 of this appendix.

2 Usually the early and late voltages are generated by the same code correlator that is time-shared between
the two measurements.




Note that the early sample is formed by correlating the received voltage with the local
PN code advanced in time by one-half chip period, and the late sample is formed by
correlating the received signal with the local PN code delayed by one-half chip relative
to the on-time code.

The combined response of a sampled channel and the code correlator can be
written as a discrete sum:

N, -1
hc(t,TD)z Zh([,iAT)ATA(TD _iAT) ,
i=0

where AT is the delay sample size, and N, is the number of delay samples (see

Eqn. 2.13). In further developments h;(z) is used as a short hand notation for
h(t,iAt) At. The channel impulse response function is delta-correlated in delay (i.e., it
represents a wide-sense stationary process in frequency), so #;(¢) has the following
properties:

{h(0)=0
(RO (D)=0
(O (D)= B3,

where F, is the mean power in each delay sample (see Eqn. 2.14), and 3, is the
Kronecker delta symbol:
1 ifi=k
;4 = {

0 otherwise

The second of these equations arises because the real and imaginary parts of the chan-
nel impulse response function are uncorrelated.

Assuming slow fading (i.e., Ty >> Ts) so the channel impulse response function
is time-invariant during the sample period, the early code correlator output sample is

N.-1 1471512
Sg= Yty =— [dEm E—1p+Ts/2)mE—~iAT) .
i=0 S -Ty/2

Similar expressions hold for the on-time and late samples. If the number of chips per
sample period is large (75 >> T ), the second integral is just the autocorrelation func-
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tion of the PN code which is assumed to be a perfect triangle. Thus the early, on-time,
and late signal samples can be written as

N.-1 (e

Sp= S hA Tp—idt 1
i=0 L Tc 2
N,-1 e
=0 L It
N.-1 P
i=0 | Tc 2

The corresponding mean energy of the early, on-time, and late samples for sampled
and continuous channel impulse response function are

N.-1 i : )
< —iAt 1
Eg)= Y BAY TR ——}
< g i=0 L TC 2
Nt o Te —int
(Ep)= Y, PA*| -2 \ (Sampled CIRF)
=0 | Ic
N.-1 B s
<EL>= E-Az M.,.l}
i=0 L TC 2

(Eg)=[G(r)A? 32—'—1-1}11
0

. 2

(Ep)= [G(n)A? TD‘T}ZT L (Continuous CIRF) .
0 | Tc

(EL)=[G()A? TD—T+l}dr
! . 2

A DLL attempts to equalize the energy in the early and late measurements, so
the ideal delay offset is obtained by solving the equation (E)=(E;) for 1. Plots of
the early and late energy for continuous and sampled CIRFs with four samples per chip
(Np =T/ At = 4) are in Figure B-2. The frequency selective bandwidth for these
plots is one-tenth of the PN chip rate. The ideal delay offset is the value of 15/ T
where the early and late curves cross. It is apparent from the figure that the ideal value
for a sampled CIRF is slightly smaller than that for a continuous CIRF.
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Figure B-2. Mean energy of early and late code correlator output for continuous
and sampled (four samples per chip) CIRF.

Ideal values of T are plotted in Figure B-3 for continuous and sampled CIRFs
with 2, 4, 8, and 32 delay samples per chip. The sampled CIRF curves have steps that
are most apparent for values of f,/ R greater than one or so. These steps result from
the change in the number of delay samples (Eqn. 2.13), as the ratio f; / R, varies.
These curves show that the ideal delay offset approaches one chip as the frequency se-
lective fading channel becomes more severe (smaller values of f,/R.), and that the
delay offset can be significantly smaller with a sampled CIRF that it is for a continuous
CIRF. This difference is probably insignificant when the offset is less than one-tenth of
a chip or so. However, when f; /R, is small and the offset is several tenths of a chip
the difference could impact whether or not a DLL maintains lock on the signal’.

3 Reinking [1995] has shown that the bias in delay error can be partially corrected by “adjusting” the
relative power in the delay samples and the delay sample size. However, such adjustments are not al-
lowed in the official DSWA channel models. Furthermore, it is the authors’ opinion that the channel
model should depend only on the modulation bandwidth of the transmitted signal, and should be inde-
pendent of the details of the receiver.
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Figure B-3. Ideal delay offset for continuous and sampled CIRFs.

It is seen that the theoretical results for a sampled CIRF approach those for a
continuous CIRF only when the number of delay samples per chip is large (greater
than 8 or so). Because of computation time or hardware complexity, it may be im-
practical to achieve the ideal performance of a continuous CIRF in a software simula-
tion or in a hardware simulator. Note that these analytic results neglect noise and are
therefore valid for large signal-to-noise ratios.

Once the ideal delay offset is known, the ideal code correlator loss is just the
value of <E0> relative to unity, its value for large values of f;, / R.. This loss is plotted
in Figure B-4 for both continuous and sampled CIRFs. The curves plotted with solid
and dashed lines are the losses for continuous CIRFs with and without delay offset, re-
spectively. For fy/R. = 1072, optimally positioning the PN code provides about 3 dB
more signal power out of the code correlator than is obtained with no offset (1, =0).

The code correlator loss is relatively insensitive to the delay sampling of the
CIRF. The loss curve for eight delay samples per chip (plotted with solid circles) is es-
sentially on top of the continuous CIRF curve. However, for values of f, /R between
0.3 and 3, the loss curve for two delay samples per chip varies noticeably from that for
the continuous case, although the loss is rather small.
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Figure B-4. Code correlator loss in frequency selective fading channels.

B.2 DPSK DEMODULATION ERROR RATE FOR CONTINUOUS
CHANNELS. .

Error rates for binary differential phase-shift keying (DPSK) demodulation are
computed in this section for non-fading additive white Gaussian noise (AWGN) chan-
nels, Rician fading channels, and slow and fast Rayleigh fading channels. The channel
impulse response function is assumed to be continuous in the time domain. The DPSK
error rates for non-fading and slow, flat, Rayleigh fading channels are neatly derived
in Schwartz, Bennett, and Stein [1966]. A slightly generalized version of their deriva-
tion is reproduced here because it is the starting point for the derivation of the DPSK
error rate in fast fading. The fast fading DPSK error rate was originally derived by
Bello and Nelin [1962b]. Their calculation is extended in Dana [1995¢] to include the
Doppler frequency spectra appropriate to transionospheric scintillation.

B.2.1 Additive White Gaussian Noise Channels.

The complex base-band signal plus additive white Gaussian noise (AWGN) at the
code correlator output for the k™ channel bit can be written as
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1 k+1/2)T
Zo=z | |re®he@+nlar
(k-1/2)T

where n(t) is complex AWGN, and h(z) is the combined channel and code correlator
response function. This equation is essentially the same as Equation (B.1) with the in-
clusion of noise. For mathematical convenience in later developments the sample pe-
riod of the code correlator is assumed to be equal to the channel bit period 7. The code
correlator loss in frequency selective fading is included in the mean power of A (?).
The notation Ty for the delay of the locally generated PN sequence has been deleted be-

cause it is assumed that the receiver sets this delay at the optimum value plotted in
Figure B-3.

The phase ¢, is determined by the transmitted data stream. For binary DPSK
modulation, a change in ¢, of 7 from one channel bit period to the next indicates a
transmitted one, whereas no change in phase indicates a transmitted zero.

Additive white Gaussian noise is assumed to have the usual properties:
(n(®)=0
<n(t1 (1, )> =0 )
(n()n’ (8)) = No 8(t; —1,)

where N, is the one-sided noise spectral density. The second equation results because
the real and imaginary components of AWGN are uncorrelated.

In further developments it is convenient to define the real and imaginary parts of
the noise voltage and the combined channel and code correlator response function:

ng(®)=Re[n(?)] n,;(¢)=Im[n(1)]
hr(®)=Re[hc ()] k(1) =Im[hc(®)]
Now, to compute the DPSK demodulation error rate, consider the code correla-

tor output samples for the k =0 and k =1 symbol periods, Z; and Z;, respectively. The
complex output voltages are then given by the expressions




T/2
Zy _1 [[rcos@q hg(t) = rsin@q hy () + ng(s)]dt
T_ 7/
T2
+_j—1- J[rsin(pohR(t)+rCOS(Pohl(f)*‘”l(t)]d[
T_ 71

= [rCOS(pO XO —rSin(PO YO +NR,O]+j[rSin(po XO +rCOS(pO YO +N/‘0]

3r/2

Z =1 [[rcos @, hg(t) - rsing, () + ng(n)]dt
T 7)2
13772

+j= _[[rsin(p]hR(t)+rcoscp2h,(r)+n,(t)]a’t
T 112

=[rcos<p] X, —rsing; Y +NR,1]+j[rsincp] X, +rcosg, Y, +N,’1]

where
| et/ DT ey
X =7 [he(ydr ¥, = 7 [ @war (B.5)

(k-1/2)T (k-1/2)T
and

k+1/2)T | k11207

New=7  [me®di Ny=2 [m®dr .
(k-1/2)T k=1/2)T

The noise samples N, and N, are the integrals of zero-mean, normally distrib-
uted random variables, and thus are similarly distributed. Furthermore, because the
ng(t) and n;(¢) components of the noise voltage are uncorrelated, Np, and N, are
also uncorrelated. Using these properties, it is easy to show that

1 k+1/2)T (I+1U2)T NO
<1\1R‘,<NR,,>=F [ar Jdr’(nR(t)nR(t')>=§—f6ky,
(k=112)T (-1/2)T
N

<N1,kN1,1> =2—;‘):5k,1 : (B.6)

<NR,kN1,1> =0



The DPSK decision metric m is [Schwartz, Benneit, and Stein, 1966]
~ * 1 2 1 2
= Rc[ZlZO]=Z|Zl +zo =1z -z

It is now easy to see that if the phase ¢, does not change from symbol 0 to 1, the sig-
nal components will add coherently in the Z; + Z, term but will cancel in the Z; - Z,
term. Thus 7 should be positive in this case, and the probability of error is just the
probability that # is negative. Conversely, if there is a 7 phase change from channel
bit 0 to 1, then the signal components will add coherently in the Z; — Z; term and will
cancel in the other term. Thus . should be negative in this case, and an error occurs if
it is positive. Assuming that zeros and ones are equally likely and uniformly distributed
in the transmitted data, we only need to evaluate the error rate for one of these cases.
Without further loss of generality*, we can assume that the signal phase remains con-
stant (@ = @) during these two channel bit periods. The probability of a demodula-

tion error is then equal to the probability that the DPSK decision metric indicates a
polarity change.

For convenience we define two new variables w, and w_ where
1 1
W+='2‘(Zl+Zo) W_='2‘(Zl—Zo) .

In terms of these new variables, the DPSK metric is

[ =a}

m=|w, [F=|w_[* =a2 -a? (B.7)

where a, and a_ are the amplitudes of w_ and w_, respectively. The w_ and w_ vari-
ables, written in terms of signal and noise components, are

* Itis shown in Appendix C that the DPSK error rate with intersymbol interference (i.e., when there is
no underlying PN code and f; is comparable to or smaller than the symbol rate) does depend on
whether or not there is a phase change in the transmitted modulation. Only in flat fading is the error rate
independent of the modulation. However, the signal at the output of a code correlator is always flat

fading, for a properly designed code, because the PN code chips on interfering symbols are uncorre-
lated with the PN code chips on the on-time symbol.
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wy = [rcos(Po (Xl +XO)"”Sirl @9 (Yl + Y0)+NR’1 + NR’0]+

(S

.2Z [rsingo (6 +Xo)+ reosoq (¥ + %)+ Ny + N |

1 .
w- =3 [reosoq (X — o) rsin 0y (f = 1)+ Ny = Ny ]+

é[rSinq)o(‘le _X0)+ rCOS(pO (Yi _Y0)+N1,1 _NI,O]

The probability of a demodulation error for the case that the signal phase is constant is
the probability that 7 is negative or that a_ is greater than a, .

In the absence of fading, the combined channel and code correlator response
function is just a complex phasor:

he(t)= e .

The voltages w, and w_ are then given by the expressions

w, = %[2)’ cos(@q +8)+ Ny, + Ni ]+—12- [2rsin(p o +©) + Ny, + Ny |

w_ =%[NR,1 —NR,O]’*':,;[N[,] _NI,O]

Thus, for an AWGN channel, w, and w_ are complex, uncorrelated (and independent),
normally distributed random variables with the properties:

<w+> =y /(?t0)

(w_) = <w+w:> =0
<w+w:r> =r’+ N, /2T
(w_wl)=N,/2T

Because w, is complex Gaussian with a non-zero mean, the probability density func-
tion of the amplitude a, is Rician, and because w_ is complex Gaussian with zero
mean, the probability density function of the amplitude a_ is Rayleigh:
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- s 4
Fla)= 2a, ai+r Io{ 2ra, }

No /D) T\ Ny @) || Ny 7 2T)
2a_ [ a> ] ,
M) =5 Tan ™| Ny an.

where I;(-) is the modified Bessel function.

The DPSK demodulation symbol error rate is, as discussed above, the probabil-
ity that m is negative or that a_ is larger than a,:

P, =Probla_>a,]|= [da, [da_ f(as,a_) .

Because w, and w_ are uncorrelated and normally distributed, they are also independ-
ent. Thus the joint probability density function f(a,,a_) is equal to the product of the
two separate probability density functions. The DPSK channel bit (or demodulation)
error rate is then easily computed:

2
Pe=—1— exp rT .
2 N,

The quantity r*T is equal to the channel bit energy E,_, in a demodulated symbol pe-
riod. Thus the expression above reduces to the familiar DPSK form:

P = 1 exp| — Eg (Non-Fading) . (B.8)
2 N,

B.2.2 Slow Non-Rayleigh Fading Channels.

Under slow fading conditions, the channel decorrelation time is much longer
than a channel bit period, and the average demodulation error rate is equal to the non-
fading expression averaged over the fading distribution of power:

(R)=

Le 15 £(8)ds . | (B.9)

09—18

The quantity Y S, where y=E_, /N,, is the instantaneous symbol energy-to-noise
spectral density ratio.
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For Rician fading, the integral in Equation (B.9) can be done in closed form,
and the average DPSK demodulation error rate is

Ry

(P,)=——— exp| ———— (Slow Rician Fading) .
2+ 20— Ry 1+ (- Ry

In the limit that the scintillation index S, is zero and the Rician index R is unity, indi-
cating non-fading, this reduces to the non-fading error rate [Eqn. (B.8)]. In the limit
that S, is unity (R =0), indicating Rayleigh fading, this reduces to the familiar
Rayleigh fading form:

(P)= > :27 (Slow Rayleigh Fading) .

DPSK channel bit error rates for non-Rayleigh fading are plotted in Figure B-5
for several values of the scintillation index. The top curve in this figure is for a slow
Rayleigh fading channel (S, =1), and the bottom curve is for a non-fading channel
(S, =0). DPSK symbol error rates for Rician fading are close to the Rayleigh fading
curve for values of S, greater that 0.75, and are close to the non-fading curve for val-
ues of S, less than 0.25. Evidently, the DPSK channel bit error rate makes a transition
between non-fading and fading for values of S, ranging from 0.25 to 0.75. -

B.2.3 Fast Rayleigh Fading Channels.

Assuming that the receiver tracking loops maintain lock on the time-of-arrival
and frequency of the received signal, two effects of fast fading degrade PN spread
spectrum DPSK demodulation performance. First, when the decorrelation time of
h(2) is less than the channel bit period, random fluctuations in the de-spread signal
phase reduce the gain of the code correlator. The signal does not integrate coherently,
and a loss in the signal-to-noise ratio of the output results. This loss depends on the ra-
tio of the decorrelation time to the channel bit period (1,/7 ), and on the Doppler
spectrum of the fading’. Second, random phase fluctuations in the received signal can
cause the DPSK metric to have the wrong sign. The receiver then misinterprets phase
fluctuations caused by fading as phase changes in the transmitted signal.

* Here 1, is the decorrelation time of A (z). This the same as the decorrelation time of the channel only
for the turbulent model. For the general case, the decorrelation time of k(1) depends on antenna fil-
tering, if any, and on the relative delay between the local and received PN codes.
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Figure B-5. DPSK channel bit error rate for Rician fading channels.
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Both of these effects can be treated simultaneously in a derivation similar to one
developed by Bello and Nelin [1962b] about 35 years ago. The starting point of the fast
fading error rate derivation is the DPSK metric (Eqn. (B.7)] written in terms of the
w, and w_ variables.

In fast Rayleigh fading, the combined response function A.(7) is a complex,
zero-mean, normally distributed random process, so the amplitude of 4.(z) has a
Rayleigh distribution. The X and Y variables in w,_ and w_ are then zero-mean, nor-
mally distributed random variables. Thus w_ and w_ are similarly distributed. The
second order moments of w, and w_ are then easy to compute:

<W+W;;>=§[<xg>+<xf>+z<xoxl>+<yoz>+<ylz>+z<yon>]

+i[<N12e,o> +(N7, )+ (NE )+ (N, >]

(ol )= T 3) + (X2 )= 2003, ) + (1) + (72) - 2(81)]

5o} () (o) ()

o) = 1080)- 058+ 1) 3]
+%[<N12U>_<Ni26,o>+<N12,1>—<N%O>]: 0

where cross correlation terms of the form channel X noise or noise X noise are zero.
Because the w, and w_ terms are uncorrelated and normally distributed, they are also
independent®. The second order moments of the noise terms are given in Equation
(B.6), and the second order moments of X and Y are

% Note that w, and w_ are uncorrelated if and only if there is equal average power in the real and imagi-
nary (or in-phase and quadrature-phase) components of the noise and combined channel and code cor-
relator response function. Evaluating the effects of imbalances in the average power of these compo-
nents is beyond the scope of this idealized model, but is easy to compute with COMLNK.
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=)= {1)= 07} -4,
(X%oX))=(h)=%R,

With some computation, R and R, can be written in terms of the temporal correlation
function p () of the combined channel and code correlator response function:

1
R =2[(1-&)p(TE)dE,
0

| |
Ry = [(1=8){p[T-&)]+ p[Ta1+E)]} &
0

Once it has been determined that w, and w_ are uncorrelated (and thus are in-
dependent), complex, zero-mean, normally distributed random variables, it is simple to
compute the DPSK error rate. The DPSK metric can be rewritten as

2

m=a2—-a

where a, and a_ are equal to |w,| and | w_|, respectively. The amplitudes a, and a_
have Rayleigh probability density functions:

flay) =200 g by
Ry

?

f(a_)=%-——e_a£/”_

where

_T IR 4R, 4y
H+—'2‘[ PRy +Y ]

_”IR _R o
po=[Ri-Ry+77']

The average symbol error rate is then the probability that a_ is larger than a,:

()= ] day f(@,) ] da. fa)= TR |

ai
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which reduces to

-1

<Pe>=%(R_ﬁ_:§_Y_15— (Fast Rayleigh Fading) | (B.10)

One can see from the definition of R, that this quantity is equal to the loss in sig-
nal energy within a channel bit period’, so the quantity Y R, is the value of the channel
bit energy-to-noise spectral density ratio. The quantity 1~ R, / R, then represents the
degrading effect of channel bit-to-bit phase fluctuations on demodulation performance.
In the slow fading limit (ty >>7T), R, and R, both approach unity, and the fast fading
error rate reduces to the expression for slow Rayleigh fading.

When the fading is fast (1, < T), there is a certain probability that channel phase
fluctuations will erroneously change the sign of the DPSK decision metric resulting in
what Bello and Nelin [1962b] call an irreducible error rate. For large values of v, the
DPSK error rate reduces to

_R-R
T

(y>1 (Fast Fading Irreducible Error Rate) |

independent of v. The irreducible error rate depends on the ratio 1, /7 and on the
Doppler frequency spectrum of the fading. This probability is independent of signal-
to-noise ratio for large values of y because it is the signal phase that is randomly
varying and causing demodulation errors.

For the Doppler frequency spectra defined in Section 2 that are representative of
transionoshperic propagation, R; and R, are

7 The A/D output signal voltage is proportional to

1 T2
S== [hDar .

=-T/2

so the power of the output signal can be written as

}(l—ftl/T)pC(t)dt -

~-T

(ss7) =1
T

This expression reduces to R, with a change in variables.
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}247[914 ~3+(T, +3)e" | I
R, =1 %[8% —15+(T¢ + 7T, +15)e’T6] 8
-12
\/;t_erf(Tg ) _1- e2 - Gaussian
L Tg Tg
%[3-2@4 +3)e™ T + (27, +3)e_2T“] Vi
4
R, =: -3%[15 ~2(T2 + 7T +15)e” s +(4TZ +147, +15)e‘2T6] £
6
l@[crf (2T, ) - exf (Tg )] + ——17[1 +eT _2eh } Gaussian
7, 2T

where T, =0,T /T, T = 04T /Ty, and T, =T/1(, and where o4 and 05 are numeri-
cal constants defined in Section 2.

Figure B-6 shows the DPSK channel bit error rate in fast Rayleigh fading for
several values of the ratio 7y/T. The Doppler frequency spectrum for these cases has
the f 4 functional form. As the channel bit energy-to-noise spectral density ratio in-
crease, all curves, except the T¢/T =0 case, eventually flatten out and approach an irre-
ducible error rate. In this respect, DPSK demodulation is quite robust compared to co-
herent PSK: The decorrelation time can be as small as 10 times the symbol period, and
symbol error rates near one percent can still be achieved. For coherent PSK, the
decorrelation time must be greater that 30 times the symbol period to achieve de-
modulation error rates below one percent®,

# Even more robust performance in fast fading is obtainable with frequency shift keying (FSK) modula-
tion and non-coherent demodulation. There still is an irreducible error rate because the Doppler fre-
quency spectrum of the fading smears signal energy across the FSK tones, but a binary FSK link can
operate at smaller decorrelation times than a DPSX link with the same symbol period. FSK links can be
further hardened to fast fading effects by using larger tone spacings [Bogusch, 1989].
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Figure B-6. DPSK demodulation error rate for fast, Rayleigh fading channels.
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Another view of the effect of fast fading on DPSK demodulation performance is
given in Figure B-7 where the irreducible channel bit error rate is plotted versus nor-
malized decorrelation time (to/T) for the three Doppler frequency spectra. These
spectra produce irreducible error rates that are within a factor of 2 or so for a given
value of 1o/T. The normalized decorrelation time must be greater than 2, 3, and 10 to
achieve DPSK demodulation error rates less than 0.1, 0.05, and 0.01, respectively.

B.3 DPSK FAST FADING DEMODULATION ERROR RATE FOR
SAMPLED CHANNELS.

Although an actual transionospheric channel impulse response function is
continuous, the calculation of the CIRF for use in COMLNK or in a hardware channel
simulator necessarily involves sampling in both time and delay. Earlier in this
Appendix we discussed the effects of delay sampling of the CIRF on code tracking.
Here we focus on the effects of time sampling on DPSK demodulation performance.
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Figure B-7.  DPSK irreducible channel bit error rate for fast Rayleigh fading chan-
nels.
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It has been the practice of the authors to sample the CIRF in time with sufficient
resolution that the temporal statistics of fades to —30 dB or so match ensemble values.
The requirements on time sampling to achieve such a match are discussed in Dana
[1988]. Once these requirements have been met, we have assumed that the sampling is
also adequate for DPSK demodulation. The purpose of this discussion is to explore the
limitations, if any, of this assumption.

In the time domain, the CIRF is sampled at a fixed rate where the sample period
is usually an integral fraction of the channel decorrelation time (i.e., Ar =1, /ny where
ng is an integer). The signal contributions to the X and Y samples in Equation (B.5) are
then constructed as

1 k+NT—1 1 k+NT—]
X, S Re[hc(lan]|Aay, Y == 3 Im[rc(AD]Ar
T 1=k T 1=k

where N is the number of CIRF time samples per symbol period 7, and A, (/At) is
the time-sampled combined channel and code correlator response. The time sample in-
terval is a function of the index [ to account for edge effects (in general, the symbol
period begins and ends between channel samples). To simplify this calculation some-
what, but with a slight loss in generality, we assume that there are an integer number
of channel samples per symbol and that they are aligned with the symbols. Thus we as-
sume that At; = Ar=T/Ny for all .

For Rayleigh fading the sampled CIRF is a zero-mean, normally distributed
process with uncorrelated real and imaginary parts. Then, as shown above, the DPSK
demodulation error rate depends on the second order moments of X and Y. The vari-
ance of X and Y is

2 k+Np~1 k+Np-1

() =-{r)= 23 Yola-nnd =
I=k =
where p(z) is the temporal correlation function of the channel. The leading factor of
1/2 results because the real and imaginary parts of A-(IAt) each contain exactly 1/2 of
the signal power. By counting the number of terms with the same value of [ —/’, the
expression for R; reduces to

R, =-N1—T{1+2Z‘f(1—1/1v7)p(zm)} .

=1
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Similarly, the cross correlation of X and of Y is

2 dpld-1)at]=1R

C=<Xka+NT>=<YkY’<+NT> 2T2 ik rekaN
.

After some manipulation the expression for R, reduces to

R, = {p(T)+Z(1 I/Np)[p(T+1A0)+p(T-1A7)]7 .
N =1

Note that in the limit of slow fading (i.e., when p=1) both R, and R, are unity.

The DPSK channel bit error rate is given in terms of R, and R, by the expres-
sion in Equation (B.10). The error rate is relatively insensitive to the number of tem-
poral channel samples per symbol as illustrated in Figure B-8 where (Pe> 1s plotted
versus channel bit energy-to-noise spectral density ratio for three values of the ratio
To /T and for continuous and sampled CIRFs. While there are small differences be-
tween the sampled and continuous CIRF curves for the N =1 case, particularly at
small values of 1, /T, the sampled case curves for N, greater than one agree well
with the continuous CIRF curves. Thus only the Ny =1 and 2 cases are plotted in the
figure.

Note that the DSWA requirement is that there be at least 10 samples per decor-
relation time [Wirtwer, 1980]. For one and two samples per symbol, this requirement
is only met when 74 /T 210 and 1, /T =5, respectively. Thus for the t,/7 =3 and
To/T 21 cases, the channels are significantly undersampled. We conclude that when
the channel is sampled at least 10 times per 1, time sampling effects on DPSK de-
modulation are negligible.

This does not say that this issue can be ignored entirely. Indeed the signal energy
in a channel bit period is very sensitive to the resolution of the time samples, as shown
in Figure B-9. Here the signal sample energy loss due to fast fading (which is equal to
1/ R)) is plotted versus the ratio T, /T for continuous CIRFs and sampled CIRFs with
1 through 32 channel samples per channel bit period. In the fast fading limit, R, for
sampled CIRFs approaches 1/ N ; rather than zero, as is the case for continuous CIRFs.
Thus these results show that there can be significant discrepancy in the fast fading sig-
nal loss at small values of Ty /T with time-sampled CIRFs. However, at values of
To/ T where the output signal is significantly affected by the resolution of the temporal
sampling, the irreducible DPSK demodulation error rate is already 50 percent.
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APPENDIX C

DEMODULATION PERFORMANCE OF DIFFERENTIALLY COHERENT
PSK (DPSK) WITHOUT AN UNDERLYING SPREAD SPECTRUM CODE

A functional block diagram of a differentially coherent phase-shift keying
(DPSK) receiver without an underlying spread spectrum code i1s shown in Figure C-1.
The transmitted data are differentially encoded so that differentially coherent demodu-
lation can be used. Thus only the frequency but not the phase of the received signal
needs to be tracked. This eliminates the primary failure mechanism of a coherent PSK
receiver in a fading channel — loss of phase lock.

Without an underlying pseudo-noise (PN) code, time and frequency selective
fading effects are not mathematically separable as they are with a PN code (see Appen-
dix B). Thus the problem of DPSK demodulation in time and frequency selective fad-
ing channels is considerably more complex in this case. Because of this we have not de-
veloped analytic demodulation error rates with as much detail as is included in the
analytic model for DPSK with a PN code. In principle such detailed models could be
developed, but would add little to the COMLNK validation process. To simplify the
comparison of COMLNK and analytic results we always consider either fast, flat fad-
ing or slow, frequency selective fading, although analytic expressions have been devel-
oped for fast, frequency selective fading.

Delay tracking can be accomplished in this type of receiver by measuring the
signal energy during the first and second halves of the modulation period and equaliz-
ing the energy in these two measurements’. To simplify this calculation we approxi-
mate the effects of delay tracking by finding the sampling time that maximizes the re-
ceived signal energy. We then show that the optimum sampling time in frequency se-
lective fading is a small fraction of a symbol period, even in severe conditions.

In Section C.1 of this appendix we derive the received signal in terms of the
channel impulse response function and then investigate the effect of delay tracking by
finding the ideal delay offset. The ideal offset is between zero and two-tenths of a sym-
bol period late, depending on the severity of the frequency selective fading, relative to

! Actually, several different delay discriminator algorithms can be used, as described in Bogusch [1990].
Perhaps the most common PSK technique involves mid-bit sampling.
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the optimum position in a non-fading or flat fading channel. These results are used to
compute on-time and intersymbol interference (ISI) signal energy. DPSK demodulation
performance in continuous time and frequency selective fading channels and in sampled
frequency selective fading channels is computed in Section C.2.

C.1 IDEAL DELAY OFFSET AND OUTPUT SIGNAL ENERGY.

The ideal delay offset is computed in this subsection for a slow, frequency selec-
tive fading channel with a continuous channel impulse response function (CIRF). The
ideal delay we calculate here is that which maximizes the total received signal energy,
including the on-time signal and the ISI. Presumably, a delay-lock loop (DLL) that uses
early and late signal samples and attempts to equalize the signal energy in the two will
produce a delay offset close to that which maximizes the signal energy.

Consider a transmitted DPSK waveform:
m() =Y e/ n[-; - z} (C.1)
!

where ¢, = 0,7 randomly is the data modulation, and T is the channel bit period. The
rectangular function IT(") is defined as

1 1
H(x):{ for | x1<5

0 otherwise -

The output of the channel is the convolution of the transmitted modulation and the
CIRF. This convolution is

uw(@)=r | m(t~T)h(t,7)dr (C.2)
0

for a continuous CIRF, where r is the received signal amplitude.

The received signal is then sampled in an A/D converter. The sampled signal
used for data demodulation is integrated over the channel bit period, so the complex
voltage sample during the k™ bit period that is converted to a digital representation by
the A/D can be written as:

(k+1/2)T+1p

a:l [ [u®)+n@))dr (C.3)
T (k-1/2)T+1,
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where T is the delay offset. In subsequent developments we calculate the ideal delay
offset assuming that the channel is slow fading (7, >> T'), so the time dependence of
the CIRF can be ignored when Z, is evaluated.

The voltage n(t) is complex additive white Gaussian noise (AWGN) with the
usual properties:

(n(®)=0
(n(t)n(ty)) =0 ,
(n(e)n" (1)) = No 8(t; = 1)

where N, is the two-sided noise spectral density ratio. The second equation results be-
cause the real and imaginary components of AWGN are uncorrelated.

It is convenient to separate the complex signal samples into contributions from
the on-time signal and the ISI. Assuming that the delay offset is limited to the range
0<1tp <T, the on-time signal contribution to Z & is

T+TD

S, = rel% fh(T)A(T—TTD)dT ,
0

where we have suppressed the time dependence of the CIRF for this slow fading calcu-
lation. The triangle function in this equation is defined as

1-1x! for lxl<l
A(x)= .
0 otherwise

The ISI contribution is

T+1p

5, = rieﬂpk-l J {h[w (1 —l)T](T_TTD)+h[*c+lT](1 - T"TTD j} dt
[=1

Tp

Rather that computing early and late voltages to find the ideal delay offset, we
will assume that the offset is close to the delay that gives the maximum mean signal en-
ergy. That is, we will find the value of 7, that maximizes

E=(so+S,[)
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ignoring the effects of AWGN. In computing the expectation in this expression, we
make the reasonable assumptions that the transmitted modulation is uncorrelated with
the channel impulse response function and that the modulation is uncorrelated from
symbol-to-symbol. The two resulting expectations are

(h@F (1)) = G@B(t-1)

<ej(¢k -<P1>> =8, » : (C.4)

where G(') is the power impulse response function, 3(-) is the Dirac delta function, and
3, is the Kronecker delta symbol:

5. = 1 ifk=1
K710 otherwise

With these assumptions and definitions, the mean output energy of the on-time and ISI
contributions, respectively, is

T+1p
E,=(S,585)=r? szAz(ﬂ’ijd
0 <0 0> r (1) LU
0
T+1p 5
E=(,8)=r | G (T‘TD) dt
I <1 1> r J (v) T
0
T+1p .
o0 _ N2
+2Y JG(1+IT)|:1—2(T TD)+2(T TD) }dﬂ:
1= T T
Tp

When G(-) has an exponential form [Eqn. (2.8)], the on-time and ISI terms reduce to

2 l_e_)\'(1+TD/T)+7\4 l_ze-ktD/T'—T /T
Ey=r? (32 1) +2 (73 o/7)

e‘“D’T(l Ce 27Le‘7‘)

(1—6—}\)7\.2 s

E, =2r°




where A =271 f,T.

The ideal value of T, /T that maximizes E, + E; is plotted in Figure C-2 versus
normalized frequency selective bandwidth, f,7. When fyT is less than 0.1 or so,
Tp/T approaches 0.182. The on-time, ISI, and total signal power for the ideal value of
Tp/T (solid and dashed lines) and for T, /T equal to zero are plotted in Figure C-3.

In the limit of severe frequency selective fading, the total signal energy ap-
proaches 2/3. The loss of 1/3 of the energy is often attributed to the “mismatch” of the
received signal and the rectangular pulse shape assumed in the receiver. However, the
missing 1/3 of the signal energy (in the limit that f,7 <<1) is actually contained in the
cross correlation of the on-time signal and interfering signal voltages, which is identi-
cally zero in this calculation only because we assume that the DPSK modulation is un-
correlated from bit-to-bit. If long sequences of zeros or ones are transmitted, then the
signal modulation is perfectly correlated from bit-to-bit, the cross term is no longer
zero, and the total energy is unity for all values of f,7, as it should be.

The signal energy for the zero offset case (1 =0) is shown in Figure C-3 be-
cause in later developments we are going to ignore the delay offset to simplify the tedi-
ous algebra somewhat. These results show that the total signal energy is relatively in-
sensitive to the value of 7, /T. However, using the ideal delay offset increases the on-
time signal energy by a factor of 3/2 or so and decreases the ISI energy by a factor of
about 2. Thus we expect there to be some impact of delay tracking on the DPSK de-
modulation error rate in frequency selective fading.
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Figure C-2. Ideal delay offset of DPSK receiver in frequency selective fading.
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Figure C-3. On-time, ISI, and total signal energy for ideal and zero delay offsets.
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C.2 DPSK DEMODULATION ERROR RATE IN FAST, FREQUENCY
SELECTIVE FADING WITH CONTINUOUS CIRF.

Error rates for binary differential phase-shift keying (DPSK) demodulation are
computed in Appendix B for non-fading additive white Gaussian noise (AWGN) chan-
nels, Rician fading channels, and slow and fast, flat Rayleigh fading channels. In this
appendix the calculation is extended to fast, frequency selective fading. The DPSK er-
ror rates for fast fading or frequency selective fading was originally derived by Bello
and Nelin [1962b]. To our knowledge this is the first time this calculation has been ex-
tended to simultaneous fast and frequency selective fading. To simplify the calculation
somewhat we assume that the CIRF is continuous and that the delay offset is zero.

By combining Equations (C.1), (C.2) and (C.3) the complex signal plus noise
voltage, sampled over a channel bit period 7, is

o T TI2 o
Ze=ry et | an- jd:h(r+kT,r)n(——+z)+Nk ,
i=0 T T
(-nT -T/2

where the delay offset has been set to zero, and the CIRF is identically zero for nega-
tive values of delay. The AWGN contribution to Z,, :

(k+1/2)T
Ny== [n(nar ,
(k-1/2)T

has the following properties:

(Ny.)= (N N;)=0

« . (C.5)
<NkN1 > = %‘Sk,z

It is convenient to separate the k" voltage sample Z, into on-time and ISI con-
tributions:

Z, =re’® S (k) +r Y el S,(k, )+ N, ,
=1




where

T T/2
& 1 t—1
S](k)—J.dt? J. dzh(z+kT,r)H(—T-)
0 ~-T12
and
2T 1T/2 , T-
Sy (k)= '([d17_Tj/2dth[t+(k_l+DT’THI_DT]H(_T—H) .

Similarly, the k +1% voltage sample is

Ziy =rel® Sk +1)+r Y e/ S, (k+ LD+ N, .
I=1
Following the derivation in Schwartz, Bennett and Stein [1966], the DPSK deci-
sion metric is

. 2 2
m=|w [ ~|w |,

where
1
Wy = E(Zkﬂ +Z)
q .
w_= ”Z'(Zk-(-l -Z)

Upon substituting the expressions for Z, and Z,,; into the expression for m, we get

wy =

2

re/®n 8 (k+ 1)+ e/ 8, (k+1L1) + 7Y, ™18, (k+ L) + Ny
Y 3 (=2 P

v’

3

. (C.6)

tre’® 8, (k) £ re’*1 5, (k1) £ rY ¢/®/ 5, (k, 1) £ N,
: g ’ ) ‘6’ g \1=2 J/ H8_‘

v’

7

The terms in this equation have been numbered as a short hand way of referring to
them in further developments.
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C.2.1 Statistics of w,_ and w_.

In Rayleigh fading, whether flat or frequency selective, the first-order statistics
of the channel impulse response function are complex normal with zero mean. Of
course the noise is also complex normal with zero mean. Because the integral of a zero
mean, normally distributed random process is similarly distributed, w, and w_ are
also zero mean, normally distributed random processes. Thus the statistics of w, and
w_ are completely determined once the second order moments of the eight terms are
computed.

For the steady state channel and AWGN random processes considered here, the
variances of the terms in Equation (C.6) must be independent of the index k. Thus the
variances of terms 1 and 5, terms 2 and 6, terms 3 and 7, and terms 4 and 8 are all
pair-wise equal. The variance of terms 4 and 8 is given in Equation (C.5). Further-
more, because the channel fluctuations are uncorrelated with the AWGN, all channel X
noise cross terms necessarily have zero mean.

The variance of term 1 in Equation (C.6) is

2
ol = f—(sl (k+ D3] (k+D)

T T/2 T/2

T AN G A
=7 zjdrgd’r Tj/czzz TJ/cit <ﬁ(r+kT1)h (t +kT1)>l’I( - )n( . )

The turbulent model is assumed so that the expectation of the channel impulse response
function is equal to the power impulse response G(-) times the temporal autocorrelation
function of the channel:

(ht R (1)) = pt =) G(D)8(T -7 .

After some manipulations of the two time integrals, the expression for 612 can be re-
duced to a single time integral with the result

21 -C
== [ TGO [dEpTA-L-8)
0 0

where { =1/T and £ =1/T are normalized delay and time variables, respectively.
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The variance of term 2 in Equation (C.6) is

2 .
ol = f4—<52(k +1L185 (k+1,1)

2 2T 2T T/2 T/2
jdxjdr Jdt [ar (Wt + e+ DT 3R [¢ + (R +DT,])
4 ~T/2-T/2

xH(Z—-—T—H)H[I i +1)
T T

Similar manipulations as were performed in the expression for (512 reduce this variance
to the following

= j d T G(TG) J dEp(TE) (L~ &)

+% _deTG[T(CH)] J dEP(TE) (1~ - &)
0 0

The variance of term 3 in Equation (C.6) is

2
O3 =

nMg

% i < J(Pk+l—l"j(pk+l-l'><§2(k+1,Z)§;(k+l,l/)> '

We assume that the transmitted modulation is uncorrelated with the channel impulse
response function and is uncorrelated from symbol-to-symbol®. Thus the expectation of

the modulation is given by the expression in Equation (C.4), and the double summation
in this equation reduces to a single sum. After some algebra,

oo 4
=%2{jd§TG[T(C+l)] JEpe) )
1=1 0

1 1-¢ ’
+[dCTG[TEC+1+1)] Jdip(m)(l-c—&)}
0 0

> The first of these assumptions is reasonable because the transmitted data and the channel fading are
completely unrelated. The second assumption implies that the transmitted data are random and do not
contain long sequences of zeros, ones, or alterating zeros and ones.
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The two terms within the curly brackets are equal to 63 when [ = 0. Thus 63 + 63 and
Gé + 0‘% are equal to this expression with the lower summation limit set to zero.

Fortunately (because they are quite tedious to calculate), there are only five sig-
nal x signal cross correlation terms that are non-zero. The other 10 signal X signal
cross correlation terms are equal to zero because the transmitted modulation is uncor-
related from symbol-to-symbol [i.e., because of Equation (C.4)]. All 12 signal X noise
cross correlation terms and the one noise X noise cross correlation term are equal to
zero. The non-zero terms are Cp,, Cjs5, Cy5, Cs6, and Cs; where C); denotes the cross
correlation of the k™ and I terms in Equation (C.6). The 1-2 cross correlation is

2
r a Pt
Cio = (8 + DS (k+1.1)
2 T 2T T/2 T/2

4T2jd1fdr Jar [ar W+ (k+DTA)R" [+ k+ DT, 7))

0 -T/2 -T/2

x n("‘)n(t -t +1)
T T

After considerable manipulation this expression reduces to

' 1/2
Ca=" | dcmm{]daap(mwuc [dEp(Te)+ chapat)a é)}
0

+— IdCTG(TC){ JAEENTE) +(1-0) Jdﬁp(Tﬁ)ﬁdip(Té)(l—i)}

1/2 1-¢

The 1-5 cross correlation is

Cs=t <Sl (k+1)S] (k)

T T2 T2
zjdtj'dt [at ja’t< [t+ (k+1)T, 7]k [t'+kT,’t']> ,
r 0 0 -T/2 -T/2

XH(‘?JH(";T')
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which reduces to

1-§
_ %}dgm(m [ {p[TE +1)] +p[TA- O A-C-E) |
0 0

Next, the 2-5 cross correlation term is

2
Cys = i-%<52 (k+1D)S] (k)

2 2T T Ti2 Ti2 .
jdrfdt Jar [ar W+ +DT,2)k [ +kT,77])
~T/2 -T/2

X H(’—"T—EH)H(I - )

After some manipulation it can be seen that this expression is equal to C,, except for
the leading sign.

The 3-6 cross correlation is

r2

Coc =+—
36 .

uMg

< BT [ JI ><,§'2 (k,1) S‘; (k+1, l)> .

The expectation of the modulation is non-zero only for the [ =2 term, so this expres-
sion collapses to

Csg = (8, (k1S5 (k +1,2))

L’_

4
2 2T 2T T/2 Ti2

jd’tjd‘c [ar [ar e+ kT3]0 [ +kT,0 +T])
-T/2 -T/2

X H(I_—TH)H([ —v +1)
T T
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After considerable algebra, this reduces to an expression similar to that for C;, except
for the sign:

1/2
Cyg =+— [dCTG[T(C+1)] {Jd&ép(?‘&)+cjd&p<7§>+ [dEp(TEY(1- é)}
0

_r__
4 It

—”; JdCTG [T +1)] [Jdéép(ﬁ)m—C) Jdip(ﬂiﬂjdip(ﬁ)(l &)}
1/2 1-¢

For the exponential form of the power impulse response function [Eqn. (2.8)],

G[TC+D]=eG(T1T) ,
where A =27 fyT. Thus

Cy = tet C,, (exponential power impulse response function) .

The final cross correlation (3-7) to be evaluated is

=¢ﬁ4—§ ¥ (/P80 )8, (k+ 1,185 (k1))
=2 I'=2

The expectation of the modulation is non-zero only if " =/-1, so a single sum results:

2 o 2T 2T T/2 TI2
Z Ja’tjdt jar far

-T/12 -T/2
><<h[t+(k+2)T,‘c+(l—l)T]h [t +k+ DT 0+ -2T]) .

x H(I——I+1)H(t —t +1)
T T

Again after considerable manipulation, C3; reduces to

2

oo 1/2
> 1IdCTG[T(C+l>]{]d’;&p(7§>+c [dEp(TE) + Jd&p(f&)(l &)}
0

r
41:1 1-¢

2 oo
r
t—>
4'l=11

1
[dCT Gl T<§+z>1{jdéép(m+<l 0 Jdip(TéHJdép(Té)(l &)}
/

2
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When G(-) exponential, C;; reduces further to

oo -\
_ e ) ) .
Cyy=xCy Ze - +Cj, _ (exponential power impulse response function) .
I=l -

These second order moments of the terms in Equation (C.6) now can be written
in terms of four double integrals:

1 1-¢
R, = [d{T G(T,) [dEp(TE)(1-C~E)
0 0
1 g
R, = [d{T G(TQ)[ dEp(TE) (G - &)
0 0
1-§
Ry = }dgrc(m [a&{plTa+8)]+p[TA-EA-C-8)
0 0

/2 g 1-§ 1
Ry =1J d¢T G(TY) {Idiip(l’é)-kc [dEp(TE)+ [dEp(TE)(1- &)}
0 4 1

0

1-¢ £ 1
+ }dCTGGC){ [dEEP(TE) +(1~0) jd&p(?&)ﬂd&p(?&)(l—&)]
172 0 1-¢ ¢

With these definitions and the exponential form for G(),

2

2 2 _F
6 =0<=—R
1 5 2 1
02+02—02+02—ﬁ Rte’ R
2 3 6 7 5 l_e_x
C,=C —rzR
12 = %25 — 4 4

2

,
Cs=—R
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roo-a
Cy=—e "R
36 4 4
gt
37 41- - M4

The variances of the noise terms (4 and 8) are given by Equation (C.5).

We note in passing that the on-time ( E,), ISI (E,), and total energy (E;) of the
signal can also be written in terms of R, and R,:

E,=2r*R,
! 1—e*
R +R
Ep =272 122
T l—e’x

C.2.2 Evaluation of Integrals.

The R, R,, R; and R, integrals can be done in closed form for the exponential
form of the power impulse response function and for the temporal correlation func-
tions given in Chapter 2. The results are tabulated in this subsection for Gaussian, f™°
and f~* Doppler spectra and for the slow fading limit (1T, >> T).

Gaussian Doppler Spectrum

2
R = o/ exp| —A + 7»2 erf| 2 |4 erf| T, - +‘/7E0“1)erf[f]
2T\ 4T, 2T, £ 27, 2T, §
1 Ty
‘5@?[1“" ]

2
R, = o/ exp 7\,2 erf| T, + = | ext| 2 —ﬁ(“’)‘)e"‘erf[T]
2T\ | 4T; 8 2T, 2T, 2T\ .

_72
+——17e"7‘[1—e 7;]
2T,
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8

2
2T ) 4T, 2T, 2T

_Arn

2T eXpLTZH

_Am
2TL

8

R,

—— [—erf

2
+ Jn exp I:LZ—} {erf [Tg + L} —erf [—)L——jl}
2T\ | 4T 27, 2T,
e 1 1 ~4T? -T7
T {erf[Tg]-—(l —T)erf[ZTg]}+ﬁ|:l+e ~2¢ " ]

[ a7
X+— erf i +erf| T ——7”—
aT? ||| 2T, 8 2T,

where erf (-) is the error function and Tg =T/7g

f Doppler Spectrum

_ 8TZ —9T A +30° -+ _ 8T +151— 8T\

(-0 3T M

N 224+ 9T, + T ) - AT (37 +16 T, + 217 ) + N (15+ 7T5 + T )

3T (T; - A)’
_ 8TZ +9Tgh + 30
(T, +A)

_ 8T —15M+8TA
3TN

-A
2 ™

N P24+ 9T + T )+ AT (37 +16 T, + 217 )+ W15+ 7T, + T )
- 3T2(T, + 1)’
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) 2T 3T A 157 TR+ T) .

R3 2
312 (T, +1)° 3T;
25 P12+ 9Ty +2T7 ) - ATy (37 + 32T, + 817 )+ A2 (15+ 14T, + 417 o
ST (T, 1)
4 2 4
+2T6(15+7T6+T6)-2(M"6) (5+5T6+T6)+x (3+37+T7) T
(13 %)’
15T +21T6x+8x2 15T - 21T\ +8)° -
t 3T, (Ts +7‘) 3T4(Ts - 7‘)3
+T6(15+7T6+T6) xT6(21+12T6+2T6)+x2(8+5T6+T6) -
3T, (T, 1)
T2(15+ 7T, + T2 )+ ATy (21+ 12T, + 217 )+ 12(8 + 5T + T ) T
3T5(T +1)°

where T, =04T/T, and O is a numerical constant (05 = 2.904630---) defined in
Section 2.1.

f~* Doppler Spectrum

2T4A - 2T4 —“3A, 2T, -A 7’4(4'*‘T4)‘7‘(3+T4)6—T4

R = + e "~

T (- T3(T, - 1.
R = 2T, + A _2T4—3K+2T4le_;\_xT(4+T4)+k(3+T4) T2
2 (T, +A)*A T A TA(T, + 1)’

. AT, +3) _2(3+T4)e,T4_x2T4(2+T4) x(3+2T4) 2T,
’ 7112(T4“*‘7L)2 Iy 7T, - 7‘)

+2T42(3+T4)—73(21+T4)6_T4_K

(7 -%)

C-18




3T, + 2 3T, -2h . T4(3+T4)—X(2+T4)6_T4

= - e
FTL(T N T(T ) T,(T, - A)?
_L(B3+T,)+M2+ T4)e_T4_l
T,(T, +1)°

where T, =o,T /T, and 0 is a numerical constant (o, =2.146193.-.) defined in Sec-
tion 2.1.

Slow Fading Limit (1o >>T)

All of the above expressions for R, R,, R;, and R, reduce to the same set of
equations in the limit that the decorrelation time is much larger than the symbol pe-
riod. The slow fading limits for these equations are

-\
Rl:Z(l—e )-M2-2)

222
2—(2+27»+7»2)e'7‘
R2 = )
2N
220 +A2 ~2¢72
Ry = G
4 -2)+ (822 )e™?
R4 = 5
4N

C.2.3 DPSK Channel Bit Error Rate.

In general, the DPSK channel bit error rate (i.e., the demodulation error rate) is

P, =P[ﬁ1<0l¢k+l =(Pk]P[(Pk+1 =(Pk]

A €7
+P[> 0] @41 = 0f + ] P[@1s1 =9 +7]

where P[ <0|@,,; =¢,] is the probability that 7 is negative given that there was no
phase change between the k™ and the k +1% transmitted bits (i.e., that Qry1 = Pr)s
P[@;.; = ¢,] is the probability that there was no phase change in the transmitted
modulation, P[# >0|@,,, =@, + ] is the probability that 7 is positive given that
there was a phase change between the k™ and the k +1% transmitted bits (i.e., that
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Qpe; =@, + 1), and P[@,,, = ¢, + 7] is the probability that there was a phase change
in the transmitted modulation.

For non-fading or flat fading channels the probabilities P[m < O[ Q. =@, ] and
P[#>0|@,,; =@, +7] are equal, so only one of these needs to be computed. Thus the
channel bit error rate is independent of the exact distribution of zeros and ones in the
transmitted data stream. For frequency selective fading these two probabilities are not
equal so both must be computed, and the channel bit error rate depends on the trans-
mitted data. In further developments we will assume that phase changes or no phase
changes are equally likely in the transmitted modulation. Thus we assume that

Plora =04 =Plop =0, +7]=% . (C.8)

This may not always be the case. For example, one could imagine a fixed message or a
preamble that contains more ones than zeros or vice versa or a long sequence of alter-
nating zeros and ones. We will show that in the limit of severe frequency selective

fading ( foT <<1) and large signal-to-noise ratio, the irreducible DPSK channel] bit er-
ror rates for the two cases are

P["Al<0,(Pk+1 = @)= 3 . (C.9)
Pl >0{@p = @) + 7] ¢
Obviously the linear average of these two limits is 50 percent, but if Equation (C.8)
does not hold, the average irreducible error rate could be greater than 50 percent.
However, because these two probabilities differ by a measurable amount only at large
error rates and large signal-to-noise ratios, this may be of little practical significance.

With the above assumption about the distribution of phase changes in the trans-
mitted modulation, the channel bit error rate reduces to

Pe=%P[n“1<0|(pk+1=cpk]+%P[n‘1>O|(pk+l=(pk+7t] : (C.10)

Case 1. @, =@, In this case the probability of a demodulation error is the probabil-
ity that the amplitude of w_ is greater than that of w,. Assuming Rayleigh fading so
w, and w_ are both zero-mean, normally distributed, complex random process, the
DPSK channel bit error rate is given by the expression derived in Appendix D:
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62 -2

o 1
Pl <0[@u =0, ] =7 1—\/ : (C11)

2
(ci + 63) —4626%p2
where
%
2 _ * 2 . (werl)
G+—<W+W+> 0'_=<W_W__> pR’:—E:oT .
The cross correlation of w, and w_ is real for DPSK waveforms.

The variances and cross correlation of w, and w_ can be written in terms of
variances and cross correlations of the individual terms calculated in Section B.2.1.
Being careful to keep track of the sign of each term, we get

62 =6 +05+02 +062 +02 +06% +03 +03
02 =02 +03+062+02+062+02 +02 +03 .12
G,0_pr=2Cy, .

Writing these expressions in terms of the R integrals and assuming the exponential
form for the power impulse response gives the following:

"2(R1+R2)+R it
1—e 4 Y

N

Gi+(5%=r

L
62 -o%=r* (e‘7‘+1 l_x)R4+R3}
L —é

—1,2
C,.0_Pr=5r"R,

where Y = rzT/ N, is the channel bit energy-to-noise spectral density ratio, E_, / Ny, in
the absence of propagation effects.

In the limit of slow (T /T >>1), severe frequency selective fading ( f,7T <<1),
the irreducible error rate (i.e., lower limit of the channel bit error rate when vy >>1)
when the modulation is unchanged (@, = ¢, ) is 3/8.
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Case 2. @, =@, + 7. In this case the probability of a channel bit error is the prob-
ability that the amplitude of w_ is less than that of w,. Again assuming Rayleigh fad-
ing, this error rate is given by the expression in Appendix D:
o2 -o?2
2
\[(oi +02) — 407020k

We get the following expressions for the variances and cross correlation of w, and w_
when the modulation has changed:

. 1
P[#>0|@g =@, +T]==|1~- (C.13)

2 2
62 =02 +03 405 +06; +06: +62 +06% +03

62 =6f +03 + 03 +03 +G% +02 +62% + 63

(C.14)
G,0_pp=-2C .

Writing these expressions in terms of the R integrals and assuming the exponential
form for the power impulse response function gives the following:

[2(R, +R
o2 +c2=r? 2R +Ry) 2)—R4+l}

62 -02=r? R3—(e'l+1 1_1)R4}
i —-e

1.2
0,0 Ppr=35r"R; .

In the limit of slow severe frequency selective fading, the irreducible error rate
when the modulation is changed (¢,,; = ¢, + 1) is 5/8.

General Case. The DPSK irreducible channel bit error rate in slow, frequency selec-
tive fading with a continuous CIRF is plotted in Figure C-4 for three cases: when the
modulation is unchanged (@,,; = @, ), when it is changed (¢,,; = ¢, + 7), and the lin-
ear average of the two. One can see from the figure that the difference between the ir-
reducible error rate for the two cases is negligible for error rates below 0.01 or so. In
further developments we will assume that the two cases are equally likely, and we will
plot the average of the error rates for the two cases.
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Figure C-4. DPSK irreducible channel bit error rate in slow, frequency selective
fading with a continuous CIRF.

The DPSK irreducible error rate in fast, frequency selective fading with a con-
tinuous CIRF and a Gaussian Doppler frequency spectrum is plotted in Figure C-5.
Here the error rate is plotted versus the product f,T for parametric values of the ratio
To/T. These results show that the effect of fast fading is to increase the irreducible er-
ror rate above that for slow fading, as is expected.
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Figure C-5. DPSK irreducible error rate in fast, frequency selective fading with a
Gaussian Doppler frequency spectrum.

C.3 DPSK DEMODULATION ERROR RATE IN SLOW, FREQUENCY
SELECTIVE FADING WITH A SAMPLED CIRF.

So far the results in this appendix have been developed for a continuous channel
impulse response function (CIRF)’. Thus the effect of the channel on the transmitted
modulation is given by the convolution integral in Equation (C.2). However, to actu-
ally generate a realization of the CIRF for use in either a simulation or a hardware
channel] simulator, the channel must be discretely sampled in time and delay. In the
time domain, the sampling is usually done to accurately reproduce the mean duration
and separation of fades, say down to —30 or —40 dB. This requires something on the
order of 40 samples per decorrelation time [Dana, 1988]. It is shown in Appendix B
that such fine time sampling is more than adequate to minimize time sampling effects
on DPSK demodulation performance.

* By continuous CIRF we mean that the delay variable is continuous. The function itself is delta corre-
lated, and hence is “infinitely discontinuous”.
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Sampling effects are more significant in the delay domain where the sample size

often is coarser. With delay sampling, Equation (C.2) becomes

Ne-1

u(®)=r Y m(t—iAt)h(t,iAT) AT

i=0
where m(¢) is the transmitted DPSK modulation, At is the delay sample size, N, is the
number of delay samples [see Equation (2.13)], and A(z,iAt) At is the sampled CIRF. In
subsequent developments, we use #;(¢) as a short-hand notation for A(z,iAt)At. Upon
substituting the expression for the transmitted modulation [Equation (C.1)], the com-
plex voltage sample in Equation (C.3) becomes

o  Ne=l q T2 _;
1=0 i=0 =-T/2 T

where N, is an AWGN sample with properties given in Equation (C.5). After a few
changes in variables and assuming slow fading so A;(z + kT can be pulled out of the
time integral, the complex voltage sample can be written as

Zk - rej(pk §1 +r2€j(p"" ’§2(l)+Nk .
I=1

Assuming that the number of delay samples per channel bit period N = T/At is an
integer, the § terms are

ND"I

§= S(-i/Np)h,
i=0

R Ny-1
S, (= % [(i/ND)hi+(z—1)ND +(1‘i/ND)hi+1ND] :

The time argument of the sampled CIRF has been suppressed because of the assumption
of slow fading.

With these definitions, the w, terms in the DPSK decision metric are

C-25




rel® 3'1 +re/® §2 1)+ rZej‘p“'"’S'z 0+

Nk+1

N =

3

o0
trel® S £re/®-18, (D) £ rZe"p"" S,(DEN,
e — —— =2 (S
7

Again the terms are numbered as a short-hand way of referring to them below.

C.3.1 Statistics of w,_ and w_.

As is the case for a continuous CIRF, the first order statistics of a sampled CIRF
in Rayleigh fading are complex normal with zero mean. Thus the statistics of w, are
completely determined once the second order moments of the eight terms are com-
puted. The second order moments of the noise terms are given in Equation (C.5), and
all channel X noise terms all have zero mean.

The variances of terms 1 and 5 are equal and are

c$=o§=<}§1‘>=? ;0 _;O (hh2)A=iINp)(1=1'INp) .

Because the CIRF represents a stationary process in frequency, it is delta correlated in
delay. Thus the delay correlation of the sampled CIRF is

<hi h:> =B ,

where P, is the mean power of the i delay sample of the CIRF [Eqn. (2.14)]. The
double sum in the variance expression then collapses to a single sum to give

ro g . 2
=05= 2 B(1=i/Np)" .
Similarly,

03 =05 =" X [R(H/Np)® + By, (1=i/ Np)’] .
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and

2 oo M : 2 . 2
63:07:12 % [R'+(1—1)ND(‘/ND) +B’+1ND(1_1/ND)] :

[\

Although the upper limit of the first sum in the expression for (5% is infinity, there are
only a finite number (N,;) of non-zero P, terms, as determined by Equation (2.13).

The non-zero cross correlation terms are Cy,, Cis5, Cps, Csg, and Csq. These
terms are

p2 Np-l
Cia =Cys =7 %B(Z/ND)(I“"/ND)
i=

Cis =512

2 Np-l _
C36=Z z;;)PHND (i/Np)(1=i/Np)

r2 oo Np-l ) ‘
C37=‘4‘2 B, (i/Np)(1-i/Np) .

-~
i
—
-~
]
(=)

C.3.2 Evaluation of Sampled CIRF Sums.

Some care must be taken in evaluating the sums that occur in the expressions for
the demodulation error rate with a sampled CIRF so that the delay grid in the analytic
error rate expression contains exactly the same total signal energy as is contained in the
COMLNK grid. The mean energy of the sampled CIRF in each delay bin ( P) in terms
of the normalized frequency selective bandwidth (A =27 f,T) and the number of delay
samples per modulation period Np, is, from Equation 2.14,

P =(1_6—X/Nb)e—iK/ND .

The total number of delay samples N in the grid is related to the total signal energy
F; in the delay grid by the expression
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The current DSWA specification for the minimum total signal energy in the de-
lay grid is 0.975 for which the factor —ln(l - PT) is equal to 3.7. We show later in this
Appendix and in Appendix G for BFSK without hopping that this may be inadequate
for IST applications and should be increased to 0.999. For this new value of F,, the
factor —In (1 - PT) is equal to 6.9, increasing the required number of delay samples by
a factor of 1.9 for small values of A.

The sums that occur in the sampled CIRF expressions for mean signal energy can
be written in one of two forms:

Np-1

Ey = ZPiRX(i/ND)
i=0
) ND—]

Ey=12 EOPI'+/ND RY(i/ND)
=1 (=

where Ry(i/Np) and Ry(i/ Np) are expressions that result from the integrals over the
sample time 7. The / sum in the second expression results from evaluating the contri-
bution of the intersymbol interference. The upper limit in the delay sums, Np -1,
must be replaced by N, —1 when N, < Nj. Equivalently, one could evaluate these ex-
pressions by setting P, =0 for i2 N_.

Because the sampled CIRF has an exponential fall-off for the delay bin energy,
-
Pi+IND =e "F

and the ISI sum can be separated from the delay sum:
Ne/Np-1 Np-1
Ey =[ Y e‘”}[ P Ry(i/ND)J ,
I=1 i=0

where N,/ N is the number of delayed modulation periods in the sampled CIRF.
There are two cases to consider. When N, < N, only signal energy from the immedi-
ately preceding modulation period contributes to the energy received during the on-
time modulation period, and

EY=O N1<ND .

When the delay spread equals or exceeds one modulation period (N, 2 Np), the ISI
sum is
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Nz / Np-1 Np-1 Nzp-1
Ey { 3 e'll}l: S P Ry(i/ND)}re"Wf’No [ Y P RX(i/ND)} N.2Np ,
I=1 i=0 i=0

where the sums are equal to zero when the upper limit is less than the lower limit. The
second term is the contribution from the “leftover” delay samples, where

Nip =M°d(Nt’ND) )

and Mod () is the remainder of the first argument divided by the second.

C.3.3 DPSK Channel Bit Error Rate,

As is the case for a continuous CIRF, the demodulation error rate in frequency
selective fading for a sampled CIRF depends on the transmitted modulation. Thus
Equation (C.7) again gives the channel bit error rate. To simplify this calculation with
little loss in generality, we will make the reasonable assumption that zeros and ones are
equally likely and uniformly distributed in the transmitted data stream, so Equations
(C.8) and (C.10) hold. The demodulation error rate for the case where the transmitted
modulation is unchanged (¢,,; = ¢, ) is then given by Equations (C.11) and (C.12) us-
ing the sampled CIRF expressions for the variances and cross correlation coefficients.
Similarly, the demodulation error rate for the case where the transmitted modulation is
changed (¢,,; = ¢, +m) is given by Equations (C.13) and (C.14), again using the sam-
pled CIRF expressions. The average DPSK demodulation error rate is the linear aver-
age of the two error rates for the two cases.

The DPSK irreducible channel bit error rate in slow, frequency selective fading
is plotted in Figure C-6 for sampled CIRFs with 2, 4, 8, and 32 delay samples per
channel bit period. The total signal energy in the delay grid is 0.975 for these curves.
For comparison, the irreducible error rate is also plotted for a continuous CIRF. The
discontinuous jumps in the sampled CIRF curves occur as the number of delay samples
in the grid changes. For small values of f,T there are many delay samples and the dis-
continuities are less obvious in the curves. As f,T increases, the number of delay sam-
ples eventually decreases to one, and the irreducible error rate is zero for flat fading
(i.e., for N, =1). Of course the value of f,T where flat fading is reached depends on
the number of delay samples per modulation period, Np.
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Figure C-6. DPSK irreducible channel bit error rate in slow, frequency selective
fading with sampled CIRFs and P, = 0.975.

Clearly there can be considerable difference between the irreducible DPSK de-
modulation error rate for sampled and continuous CIRFs depending on the value of
JoT and the number of delay samples per channel bit period. For f;7 =1.0 there is a
factor of about 4.5 difference in the error rates for the Ny =2 and continuous CIRF
cases, but this difference shrinks to a factor of about 1.5 for f,7=0.2.

Another feature of the curves is the discontinuities. The abrupt change in the ir-
reducible error rate from zero to a finite value as the number of delay samples changes
from 1 to 2 cannot be avoided. However, the discontinuities as N, varies from 2 to 3
to 4, for example, have the potential of producing discontinuous link performance re-
sults for weakly frequency selective fading channels.

The discontinuities are not caused by changes in N per se, but rather are the re-
sult of the change in the total signal energy in the delay grid as that grid varies from
2A7 to 3At, for example. This suggests that increasing the minimum energy in the
grid from 0.975 to a larger value, say 0.999, can eliminate the discontinuities. This
suggestion is confirmed by the results in Figure C-7 where the irreducible DPSK error
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rate is plotted for the larger value of P,. These curves have a much smoother variation
as fyT decreases than do the corresponding curves in Figure C-6.
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Figure C-7. DPSK irreducible channel bit error rate in slow, frequency selective
fading with sampled CIRFs and P; = 0.999.
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APPENDIX D
DEMODULATION ERROR RATE FOR DPSK AND BFSK

Both differential phase-shift keying (DPSK) and binary frequency shift keying
(BFSK) demodulation involve the comparison of two signal amplitudes. The purpose of
this appendix is to calculate the probability that the amplitude of one voltage is greater
than that of another where the two voltages are correlated, complex, zero-mean, and
normally distributed random variables with different variances.

For differentially coherent DPSK demodulation, the decision metric is
[Schwartz, Bennett, and Stein, 1966]

=4|2+ Zo|- 42 - Zy|

where Z; and Z, are successive samples of the received signal voltage. If the trans-
mitted modulation is unchanged from the 0 to 1 symbol period then Z, + Z; should
have a larger amplitude than Z, — Z,, and a demodulation error occurs if /% is nega-
tive. Conversely, if the transmitted modulation changes, then the amplitude of Z; — Z,
should be larger than that of Z; + Z,, and a demodulation error occurs if 7 is positive.
For BFSK, two tone filters are formed in the receiver corresponding to each of the
two possible transmitted tones. The demodulation decision is formed by selecting the
filter with the largest output amplitude.

For either DPSK or BFSK, the demodulation error rate is given by the prob-
ability that the amplitude of one voltage is greater than that of another voltage. To cal-
culate this error rate for the case of Rayleigh fading, we need only to calculate the
probability that |w,|2|w,| where w; and w, are two complex, zero-mean, normally
distributed random variables. A complication to this problem is introduced by the cor-
relation between the two voltages. For both DPSK and BFSK this correlation is non-
zero, and for the BFSK case this correlation is complex.

Consider w; and w, in terms of their real and imaginary parts,
wp=x + Y
Wy =% %] ¥,

Because they are normally distributed, the second order statistics of w; and w, are
completely determined by the mean values,




<x1>=<x2>=<)’1>=<)’2>=0
(x)=(3¢) =407
<x§>=<)’§>=%0§

and cross correlations,

<x1 y1>=<x2 y2>=0
<x1 x2>= <)’1 )’2>=%PR 610,
(x] }’2> = -<x2 )’1) =%P/ G0,

where pp and p,; denote the real and imaginary parts, respectively, of the normalized
correlation coefficient. The first of these equations results because, for Rayleigh fading
the real and imaginary parts of w; are uncorrelated as are the real and imaginary parts
w,. The third equation reflects the fact that the two-frequency mutual coherence func-
tion is complex. Thus for BFSK modulation and frequency selective fading, the cross
correlation of the outputs of the two tone filters is also complex. With these definitions
it is easy to see that

(wiw)=of
<W; W2>= o3
(wywy)=0

(Wl* W2> =616, (pr +7Pr)

Thus the components of the complex voltages w = (x;,y;,x,,Y,) are jointly nor-
mal with the covariance matrix

o} 0 PrC10; P00,
_1 0 o} ~P10102 PrOI0
2|pr010, —P;0,0; o3 0 ,
P;0102 PrC0; 0 G%
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so the joint probability density function of w is

f(xl,yl,x2‘,y2) = _mexp[_%w,u—l ,wt] )

To compute the error probability we need the joint probability density function
of the amplitudes of w; and w,. Changing to polar coordinates,

X

gives the following joint probability density function for the amplitudes and phases:

1
36 2 )e =
f(a1 1,4 2) ) 012 0% (l—p%—pf)

252 4 4262 +2 (6. —0 —cos(6. -8
Xexp{—al 03 @07 + a1a20102[8m( 1 —6,)p; —cos(8; 2)pR]

ofo3(1-pk-rf)

Integrating this expression over the range of the two phases (0<6, <2n, 0<0, <2n)
gives the joint probability density function of the two amplitudes:

daja a?c? +a§(512 2pa,a,
f(al,a2)=____12_expl:_ 192 Iy ,
6i05 (1—92) 01203(1‘92) 616> (1"92)
where [,(-) is the modified Bessel function, and
P=pr+pT -

The DPSK or BFSK error rates are given by the probability that one amplitude
is greater than another, so we arbitrarily set this equal to the probability that a; > a,:

P(al >a2)= Jdaz Jda] f(al,az) .
0 a,
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The g, integral can be written in terms of Marcum’s Q-function [Marcum, 1960]:

2 3 2 V2
Pa, >az)=—Jaz exp{‘%} Q{ pa22 F‘i’{}dﬂz
C, \/l—p o) \/l—p

where

o0

0a,b) = [xexp[-}(a? + x2)|Ip(ax)dx .
b

The remaining integral in the expression for P(a, > a, ) is given in Nuztall [1972].
Thus the probability that a; > a, is

65 -2

2
\/(012 +03) - 40703 p?

P(q >a2)=% 1-

D-4



APPENDIX E

DIFFERENTIAL PHASE-SHIFT KEYING
WITH DIVERSITY COMBINING

A powerful mitigation technique for fading channels is having diversity in the
received channel bits. Such diversity is obtained by transmitting the same data through
independently fading channels, and a number of ways this can be achieved are de-
scribed in Bogusch [1989]. Time diversity is easily obtained, for example, using block
interleavers where the interleaver array is simply read out several times. Multiple
copies of each symbol, separated in time by an interval corresponding to the span of
the interleaver, are then transmitted over the channel. Spatial diversity can be obtained,
for example, by simultaneously sending the same data from multiple spatially separated
transmitters to the same receiver location or by receiving the data from the same
transmitter with multiple spatially separated antennas.

With either type of diversity, one can not simply sum the signal voltages from
independently fading channels because such coherent combining does not improve the
signal-to-noise ratio unless the carrier phase is tracked on each channel to a common
reference. When phase tracking is not feasible, or if phase ambiguities are not re-
solved, the information from the diversity channels must be non-coherently combined
(i.e., quantities related to signal energy must be combined).

Differential phase-shift keying (DPSK) demodulation decision metrics are non-
coherent quantities that can be combined to take advantage of diversity. For each chan-
nel, the DPSK decision metric can be written as [Schwartz, Bennett, and Stein, 1966]

m=E,-E_ ,
where
T
E, "ZIZkH "'Zkl2
T ?
B =212 -2
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and where Z, is the signal plus noise voltage sample during the k" symbol period'. If
the transmitted phase of the k + 1% symbol is the same as that of the k™ symbol, then in
slow fading or non-fading channels the phase of the signal components of Z, and Z, _,
will also be the same, the signal contributions will add in Z, | + Z, but will cancel in
Zy.1 —Z;, and m should be positive. A demodulation error then occurs when 7 is
negative. Conversely, if the transmitted phase of the k+1% symbol is 180° out of
phase with that of the k™ symbol, then Z,,, — Z, should have a larger magnitude that
does Z,,, + Z,, and s should be negative. In this case, a demodulation error occurs
when 1 is positive.

If N copies of the decision metric are available, they can be added together to
form a combined metric:

r;l-:_— ml . (E.l)

The idea here is that the channels with faded signals have small values of r;, which
contribute little to the sum, so primarily channels with strong signals determine the
value of m.

Although this is a simple combining algorithm, there are some very important
implementation details. Obviously, the k™ symbol for each channel must correspond to
the same transmitted symbol. If spatial diversity is used, for example, then the decision
metrics from each channel must be aligned to account for possible differences in the
time-of-arrival between the channels. Also, in order for channels with weak signals to
have relatively small values of |7, all channels must have the same average noise
contribution to |n‘11| This can be accomplished by using noise-based AGC circuits.

The leading factor of 1/ N in the combining equation is there to rescale the sum
back to the same dynamic range as the individual values. This is important if there is a
soft-decision decoder following the demodulation process. Otherwise, the scale factor
has no effect on the probability of demodulation errors, and it is ignored in subsequent
developments of the demodulation error rate with diversity combining.

! This form of the DPSK metric is convenient for analytic calculations but it is not the form actually used
in hardware or in COMLNK. In a digital receiver, the DPSK decision metric is formulated as

m=11_ +Q 0



Calculation of the DPSK demodulation error rate with diversity combining as de-
scribed in Equation (E.1) is not simple. To the authors’ knowledge, it is not possible to
compute the probability density function of s in closed form for an arbitrary number of
combined non-fading additive white Gaussian noise (AWGN) channels except for the
special case where all channels have exactly the same average signal-to-noise ratio. This
latter case was addressed by Bello and Nelin [1962b] more than 35 years ago. In this
appendix we present new results for DPSK decision metric diversity combining of two
and three non-fading or Rician fading channels with unequal signal-to-noise ratios. We
assume that the fading is slow and non-frequency selective.

E.1 STATISTICS OF SINGLE-CHANNEL DPSK DECISION METRIC.

The starting point for the calculation of the DPSK error rate with diversity com-
bining is determining the statistics (i.e., the probability density function of ) of the
single-channel DPSK decision metric for non-fading channels. This function is then
used to compute the error rate when two or three metrics are summed together. The re-
sulting expressions are averaged over fading distributions to obtain results valid in slow
fading.

We show in Appendix B that in non-frequency selective fading we can assume,
without loss of generality, that the phase of the transmitted signal is unchanged between
the k™ and k + 1% channel bit periods when calculating the demodulation error rate.
Thus the signal voltage coherently adds in the expression for E, and cancels in the ex-
pression for E_ in the absence of propagation effects when we assume that the receiver
is ideally tracking the signal time-of-arrival and frequency. We also show in Appen-
dix B that the additive white Gaussian noise (AWGN) voltage contributions to E, and
E_ are uncorrelated and thus independent. The probability distributions for the ampli-
tude associated with E, and E_ are then Rician and Rayleigh, respectively. Thus the
probability density functions f.(E,) and f.(E_) of the signal plus noise energy and
the noise only energy, respectively, are

1 [ E, +r°T |, | 2{r*TE,
f;(E+)= exp 1,
N,/2 7| Ny/2 N,/2

b

1 . E
E)= _——
1(E) No/2 | N0/2:|




where I, () is the modified Bessel function, &, is the one-sided noise spectral density, T
is the channel bit period, which is also equal to the sample period of Z,, and r is the am-
plitude of the received signal. Both of these probability density functions are zero for
negative values of the argument.

The probability density function of the difference m = E, — E_ is then given in
terms of the probability density functions of E, and E_ by the usual expression:

Jﬂ(x—ﬁ)ﬂ(x)dx m>0
=1,

_[f_(x—— m)f.(x)dx m<0
\ 0

Using integrals in Nuttall [1972] to evaluate these expressions, the probability density
function of m reduces to

——l—exp _— m<0
| Mo N,
f(m)=: - : (E.2)

—l—exp 2m-Ly 0 2&, 8m m>0
NO L NO i NO NO

where E,, = r’T is the channel bit energy, and O(,-) is Marcum’s Q-function [Marcum,
1960]:

[eo]
O(a,b)= J'xexp[—%(x2 +a’ )]10 (ax)dx .
b
With our assumption that the transmitted modulation is unchanged between the
k™ and k + 1% channel bit periods, the DPSK channel bit or demodulation error rate is
equal to the probability that m is negative:

Of 1 E.
P = [ Lexp| - £
—00 2 NO

which is the familiar non-fading (AWGN) expression for a single channel.

In the developments below we need the cumulative distribution function of the
single-channel DPSK decision metric:
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F(m) = J f(x)dx .
Using integrals given in Nuttall [1972], this distribution function is

'1 [ E, —2@}

F(m)=< . (E3)
) [Be [4 b — 2 2E, [8m
- QI: NO NO:|+ = I: } Q[ NO , NO]

E.2 NON-FADING DPSK DEMODULATION ERROR RATE WITH
TWO-AND THREE-CHANNEL COMBINING.

3
IN
o

When two DPSK decision metrics for exactly the same transmitted channel bit
are available, the metrics can be added together:

Note that we have not renormalized the metrics because for our current purpose,
which is to compute the probability that m is negative given that the transmitted
modulation is unchanged between the k™ and k+1* channel bit periods, the normali-
zation is irrelevant (i.e., the probability of demodulation error is independent of the
normalization factor as long as the normalization is positive).

To calculate the demodulation error rate we assume that the receiver is ideally
tracking signal time-of-arrival and frequency and that the AWGN of the two channels
is uncorrelated and has the same average power. The most restrictive of these assump-
tions is that the noise power is the same for both channels, especially when spatial di-
versity is used and the two metrics come from two different receivers. However, the
evaluation of the effects of different average noise powers is a problem for which
COMLNK is the ideal analysis tool. Our purpose here is to develop expressions for an
idealized case that can be used to validate the simulation and estimate the performance
gain afforded by diversity combining.

Given unchanged transmitted modulation between the two channel bit periods, a
formal expression for the probability of demodulation error is just
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0
E = [f(R)di

where now f(7) is the probability density function of the combined metric. The cal-
culation of f(/) is complicated and is also unnecessary because f(#1) can be written in
terms of the probability density functions of the two separate decision metrics. For un-
correlated AWGN the two decision metrics are also independent so the expression for
P, can be rewritten as

0 0o
P = | dit [dx fi(m-x) () .

—00 —00

where fi()) and f,(-) are the probability density functions of the two individual deci-
sion metrics. Both of these functions are given by the expressions in Equation (E.2).
After some rearrangement the demodulation error rate reduces to

P = [H(R)R(-m)dn |

where F(-) is the cumulative distribution function of the individual decision metrics.
The probability density function of the DPSK decision metric, derived in the previous
subsection, has a different functional form depending on the sign of the argument.
Thus to evaluate the expression for P, one more step is necessary:

0 o0
P= [ foe(R) R (i) i+ [ fo () F_(-R)drr |
0

—00

where f, () and F,(-) and f, () and F;_() are the probability density function and
cumulative distribution function, respectively, for positive and negative arguments, re-
spectively. The probability of error can now be evaluated directly from this last ex-
pression, again using integrals given in Nurtall [1972].

After considerable algebra, the non-fading, two-channel DPSK error rate is

P =i[4+7,+7,] ¢"*72)  (Two Channels, Non-Fading) (E.4)

where 7y, and 7, are the values of the channel bit energy-to-noise spectral density ratio
(E,, / Ny) for the two channels.
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When three DPSK decision metrics for exactly the same transmitted channel bit
are available, the combined metric is

ﬁ’l=7’?’ll+ﬁ12+7’;’l3 .

Given that the transmitted modulation is unchanged between the k™ and k +1* channel
bit periods, the probability of a channel bit error is the probability that m is negative:

0 ] o0
P, = [dx [dyfi(x=) [dz fo(y~2) fi(2) .

where fi(}), f>(-), and f;(') are the probability density functions of the individual met-
rics. Each of these functions is given by the expressions in Equation (E.2). Note that
the last integral in the expression for F, is the probability density function of &, + 5,
the last two integrals are the probability density function of 1, + /i, + 713, and the first
integral is the probability that 7, + 1, + 15 is negative. After some manipulation the
error rate then becomes

P= defl(x) Tdyfz(y—x)Fa(—y) ;

where, again, F;(-) is the cumulative distribution of a single-channel decision metric
given in Equation (E.3). Remembering that the probability density and cumulative dis-
tribution functions have different forms for positive and negative arguments, this ex-
pression expands to six terms:

F,=F, +F,+PFPs+F4+Fs+F¢ ,

where

0 x
Py= [dxfi_(x) [dyfo_(y—x)F.(~y)

-0 —00

0 0
Pe,z = J.dxfl—(x)_“ d}’f2,+()’_ x) F3’+(—y)

—00 X

0 oo
Py= [dxfi_(x)[dy fo.(y— %) F_(~)
oo 0
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o0 0

By=[defi, ) [dvfo (v-x)F, (-y)
0 —0

Bs= [dfi ,(x)dvfo_(v-x)F_(-y)
0 0

Pgs=faxfi,(x)[dvfo .- X)F_(y) .
0 X

Most of these terms are just plain tedious to compute, but with some persistence closed
form expressions can be obtained for all six. Two integrals are needed that are not in
Nuttall [1972], but can be derived from results therein. These are

ij3e"‘zQ(a,bx)dx=l_b [(b +2)(b +4;)+a b il exp[ & }
; 2 2(b* +2)

and

®© 1+ 2+_1 4
‘[x3Q(a,bx)dx=2—%T&-a— .
0

The non-fading (AWGN) demodulation error rate when three uncorrelated DPSK
decisions metrics are combined is

¥ =&[(4+71+72+73)(8+71 +7, +73):| e ) )

(Three Channels, Non-Fading)

where v, v,, and y; are the values of the channel bit energy-to-noise spectral density
ratio for the three DPSK metrics.

The non-fading (AWGN) DPSK demodulation error rates with one-, two-, or
three-channel combining of the decision metrics are plotted versus the single channel bit
energy-to-noise spectral density ratio per channel in Figure E-1. It is assumed that all
N¢ channels have exactly the same value of E,, / N;.
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Note that we are plotting these curves versus the channel bit energy-to-noise
spectral density ratio of a single channel. When the power in each channel is equal, as
1s the case here, the two-channel case has 3 dB more total power and the three-channel
case has 4.8 dB more power than the single-channel case. Thus, if the diversity is ob-
tained by repeating a user bit N times over the same channel and if the channel bit er-
ror rates are plotted versus user bit energy-to-noise spectral density ratio, where

E./No=Nc(E,/No)

then the fwo-channel curve must be shifted to the right by 3 dB and the three-channel
curve must be shifted right by 4.8 dB. There is therefore a small penalty for time-
diversity combining if the channel is not fading.

This penalty is the noncoherent combining loss that is illustrated in Figure E-2,
where we re-plot the combined DPSK demodulation error rate versus E , /N, . Here
the error rate increases as N increases because diversity combining only provides a
gain when there is uncorrelated fading on each channel. When the channels are non-
fading, as they are here, or when the fading on the multiple channels is highly corre-
lated, one obtains a noncoherent combining loss.

E.3 SLOW FADING DPSK DEMODULATION ERROR RATE WITH
TWO- AND THREE-CHANNEL COMBINING.

Of course the full advantage of diversity combining is realized in Rayleigh fad-
ing channels when the fading is uncorrelated from one channel to the next. For two-
channel combining, we consider two cases. The first case is where there is uncorrelated
Rician fading on both channels, and the second case is where there is correlated
Rayleigh fading on the two channels. The first case illustrates how the advantage of
combining increases as the fading channel statistics vary from non-fading to Rician
fading to Rayleigh fading. The second case is interesting for either spatial or temporal
diversity. For example, with spatial diversity the two metrics might come from receiv-
ers separated by a distance insufficient to completely decorrelate the fading channels.
With temporal diversity, correlated fading occurs when the temporal separation of the
channel bit pairs from which the metrics are formed is not large compared to the
channel decorrelation time. The goal here is to illustrate how much correlation there
can be in the channels before the advantage of diversity combining is lost. Finally, we
compute the three-channel result for uncorrelated Rayleigh fading on all channels.
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E.3.1 Two-Channel Case With Uncorrelated Slow Rician Fading.

In this subsection we consider the case of uncorrelated, slow Rician fading. Be-
cause the underlying statistics of the channel are normal, uncorrelated Rician fading is
also independent. The average channel bit error rate 1s then given by averaging the
non-fading expression over the two Rician distributions for the two channels:

<Pe> = JdSI Tr1 (Sx)stz Ir2 (Sz)Re(YlSlaYzSz) ,
0 0

where fz(-) and fg,(-) are the probability density functions of Rician fading for the
two channels. Both of these functions are given in Equation (2.2a) with S, set to unity.
The quantity P,(y,S,,7,5,) is the two-channel non-fading result for the two E_, / N,
values equal to y,S; and 7y, S,. In evaluating this expression we encounter the follow-
ing expectations over the Rician distribution:

s\ 1 YR
e >—y(1—R)+1 exP{ y(l—R)+1}

sy _ YA-R)’+1 [_ YR }
(se7) [ya-R)+1] P Y(1-R)+1

The quantity R in these expectations is the “Rican index” which is defined in terms of
the scintillation index S, of the channel:

R=41-52

The second expectation requires an integral that is not directly in Nuttall [1972] or, to
the authors’ knowledge, any other readily available integral table. The integral is’

® a2 ] b? [bz}
I, (bx)dx = —={ 1+ . E.5
‘ix ¢ o(bx) 2a2[ 4aj xp 4a (E-5)

The average two-channel bit error rate for uncorrelated Rician fading, in terms
of the two expectations, is

2 Nuttall [1972) gives a similar integral with x rather than x* in the integrand. This expression is ob-
tained by differentiating the Nuttall result with respect to a.
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(BY=4{e705 M™% ) 4 Ly, (8,675 Y125 ) 4 Ly, (715 )(5,e772%) .

(Two Channels, Uncorrelated Rician Fading)

In the limit that both channels are non-fading, the Rician index of both is unity,
the Rician probability density function acts as the delta function §(S —1), both expecta-

tions are equal to ¢, and the non-fading limit of this expression is identical to the
AWGN error rate in Equation (E.4).

When both channels are full Rayleigh fading the error rate reduces to

py SNY2 +5(Y1 +7,) +4
< >_ 2 2 :
8(?1'”) (Yz“"l)

(Two Channels, Uncorrelated Rayleigh Fading)

(E.6)

It is interesting to consider this expression when one channel has a very small signal-to-
- noise ratio (say v, = 0). The resulting error rate in the limit that the other signal-to-
noise ratio is large is

(Ry=3v7" (1:>>1,7,=0) .

If only the strong signal channel is used to form the DPSK decision metric then this
limiting error rate is

(RY=1yi'  (y,>>1, single channel) .

Thus there is a small penalty for adding the contribution of a channel with a weak sig-
nal to the decision metric, as one would expect. Equivalently, there is a small benefit to
not using the contribution from channels with weak signals if that condition can be rec-
ognized a priori.

The two-channel, Rician fading demodulation error rate is plotted in Figure E-3
versus the average single channel bit energy-to-noise density ratio without propagation
effects. The values of E_, / Ny and S, are assumed to be the same in both channels. For
comparison, the single-channel DPSK demodulation error rate curve is also plotted in
the figure. As is the case for single-channel demodulation, Rician fading curves for

2-channel demodulation essentially vary from the non-fading to full Rayleigh fading
curves as S, varies from 0.25 to 0.75 or so.
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E.3.2 Two-Channel Case With Correlated Slow Rayleigh Fading.

Now we consider the effects of correlated Rayleigh fading on the two channels.
The noise in the two decision metrics is uncorrelated as before. The joint probability
density function of correlated Rayleigh fading powers S; and S, is

1 S+ 8 2p+/S,S
fp(Sl’S2)=1 5 eXpI:— 1 2}10[ P~/91 2] ,

1-p? 1-p?

where p is the correlation coefficient of the complex channel response function [Dana,
1995b]. The average error rate is then given by the double integral

<Pe>=,[dSIdeZfp(Sl’SZ)Pe(YlSl’YZS2) :
0 0

After considerable algebra this expression reduces to

(P =6Y172(1‘Pz)+5(71+Y2)+4
e 7 -
8[1172(1-p)+ 71 +7, +1]

(Two Channels, Correlated Rayleigh Fading)

In the limit of uncorrelated fading (p = 0) this expression reduces to that in Equa-
tion (E.6), as it should. The large signal-to-noise ratio limit of the uncorrelated
Rayleigh fading expression is

<Pe>”%(Y1Yz)_1 (p=0and v;>>1, y,>>1) ,

whereas in the limit of perfectly correlated fading (p =1) and large values of the sig-
nal-to-noise ratio, the error rate is

<Pe>'~'%(Y1 Jﬂ/z)—1 (p=1and 7y, >>1, v, >>1) .

Clearly there can be a large error rate penalty for combining DPSK decision metrics
from correlated fading channels relative to that obtained using metrics from uncorre-
lated fading channels. Still, combining two metrics with perfectly correlated Rayleigh
fading but uncorrelated noise provides an approximate 5/8 reduction in the error rate
over the single-channel value, at the expense of 3 dB more total power. Thus, there is
still a noncoherent combining loss with correlated fading.
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The two-channel DPSK demodulation error rate with correlated Rayleigh fading
is plotted in Figure E-4 for several values of the channel correlation coefficient. Al-
though there is a large penalty for combining decision metrics from two correlated
fading channels, it is seen that the channels must be highly correlated to suffer the full
penalty. Indeed, correlation coefficients greater than 0.75 are necessary for any sig-
nificant degradation over the uncorrelated case.

Note, however, that there may be little advantage to diversity combining in
coded systems. Given a good code with sufficient interleaving, channel bit error rates
on the order of 0.1 can produce negligible decoded bit error rates. Figure E-4 shows
only a small gain with uncorrelated fading in such cases. The major advantage of di-
versity combining may arise from relaxed interleaver requirements resulting from a
shorter effective decorrelation time. This remains to be investigated.

E.3.3 Three-Channel Case With Uncorrelated Slow Rayleigh Fading.

In uncorrelated fading channels, the average three-channel combined error rate
is computed from the expression

(B) =4 N2 N5 )+ &y (51670 N5 ) e %) +
(TN, 725 V5 )y (e e % )55 )|
A O A TR O P AR LR CRE R I
O D S S R FH O R e B

+v2 (1S ><5226—sz: ><e"“{353 )+ v2 (=118 Mg~ 125: ><S32e“7353 >]

This error rate can be evaluated for Rician fading using the following expectation:

(52675) = 2ly0- R’ +1]2 — R exp[— y }
[YA-R)+1] y(1- R)+1

To calculate this expectation we have used the following integral derived by differenti-
ating the expression in Equation (E.5) with respect to a:

oo

S o 1(. »* b [bz]
Io(bx)dx=—|1+—+ —1 .
‘([x ¢ o (bx)dx a’ 2a  324° xp 4a
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Expressions for the lower-order moments are given in the previous subsection.

In the limit of Rayleigh fading on all three channels, the average demodulation
error rate reduces to

1
Pe =
)= 2+ 0, 701 7
L2 Ys H13(VYa 1Y +Y2Y3) +6(Y1 + 72 +¥3)
32(y, + 1)2(\/2 + 1)2()/3 + l)2
0D (s + 1) +ya(n + (1 + D) 3 (1 1) (1, +1)°
320y, + 1) (v, + 1) (y3 +1)°

(Three Channels, Uncorrelated Rayleigh Fading)

The channel bit error rate from one-, two-, and three-channel combining of the
DPSK decision metrics is plotted in Figure E-5 versus the single channel bit energy-
to-noise spectral density ratio E_, /N, and in Figure E-6 versus the total user bit en-
ergy-to-noise spectral density ratio E,, /N . For comparison, the non-fading, single-
channel error rate curve is also plotted in the figures.

The advantage of diversity combining of uncorrelated channels is evident from
the error rate curves in Figure E-5 for the case where the multiple channels do not
dilute the value of E_, /N, per channel. In this case, combining two Rayleigh-fading
decision metrics produces a demodulation error rate that is smaller than the single-
channel non-fading value for error rates above about ten percent, and combining three
Rayleigh-fading metrics results in a demodulation error rate that is smaller than the
non-fading, single-channel value for error rates above about one percent.

The advantage of diversity combining is not so evident when the total user bit
energy is divided among the channels, as illustrated in Figure E-6. In this case the
multiple channel bit error rate with Rayleigh fading is about the same as that for a sin-
gle channel with fading until the demodulation error rate is significantly below 10 per-
cent, and the three-channel error rate curve is not much different than the two-channel
curve until the demodulation error rate is well below one percent.

In either case, the advantage of diversity combining may be more evident in the
bit error rate at the output of a decoder under slow fading conditions as the diversity
combining helps to randomize the decoder input errors.
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APPENDIX F

DEMODULATION PERFORMANCE OF NON-COHERENT M-ary
FREQUENCY SHIFT KEYING IN FAST FADING

A functional block diagram of a non-coherent M-ary frequency shift keying
(FSK) receiver is shown in Figure F-1. In such a receiver there are separate filters for
each of the M possible transmitted tones. For non-coherent demodulation considered
here, the filter with the largest output amplitude is selected to represent the transmitted
tone. With suppressed-carrier tracking, the output of the selected filter is used in the
automatic gain control (AGC), delay lock loop (DLL), and automatic frequency con-
trol (AFC) tracking loops. Thus the output of the demodulator is fed into the tracking
loops in this block diagram. This is only one of several possible design configurations.
Other implementations employ unmodulated sync symbols for tracking.

The block diagram is for a frequency hopped (FH) link. In this appendix we as-
sume that the tracking loops are operating perfectly. That is, the receiver timing is
aligned with the channel symbols, and the residual frequency error is small so any
phase variation of the signal during a symbol is caused by the channel and the fre-
quency offset between the tone and the carrier. With this assumption, frequency hop-
ping and DLL performance only have an impact on the calculation of demodulation
performance in frequency selective fading channels, which is discussed in Appendix G.

For orthogonal signaling, ideal time and frequency tracking, and slow or non-
fading channels, the signal is completely canceled in all filters except the one corre-
sponding to the transmitted tone. However, for fast fading the signal is not completely
canceled in any of the M-ary filters because of the channel-imposed phase distortion.
When this occurs, the output signal voltages of all of the filters are correlated, and it is
not practical to calculate closed-form expressions for the demodulation error rate for
general M-ary signaling. The one exception to this procedure is binary FSK (BFSK)
modulation for which we can calculate an exact expression for the error rate. As sug-
gested by Rutherford [1978]', we compute the mean power out of each filter, and cal-
culate the demodulation error rate ignoring the correlation of the filter outputs. We
will show that this procedure provides an upper limit to the demodulation error rate.

! Rutherford [1978] computed fast fading M-ary performance for channels with Gaussian Doppler
spectra and assumed that the cross correlation coefficients are zero.

F-1




"IOAT909] VS AJe-jy ue jo weiderp joorg "[-4 2Indig

— uolie|npowsag

» Msd Ae-y

rv juswainsesiy

TIIIIV odv

HI:' juswiainsea

P Ta

4"]' Juswainseapy
ooV

1959y

Bujdwes
f
an | () 4d1
© 4V
18584 )
Buydwes % (19m)s00
0
ey av [&—— ()] [E— 441
1V

18p0odeq
uonezijuenp |
1ol POUDIEIN — hm>mwuwac_mo
19114
doo D4y
L]
doo7 710
J9li4
doo 9DY J
||||| v~ —y—
(10010) (0dv)
Ow> Om>
reidia renoiq
19ZiS8Yjuis
doH
Aouenbal4

ddd

81eM]j0S
“esempieH

JoUsAU0D
oY woi4
asiop snid jeubis

F-2



Some general results for FSK modulation are given in the first subsection of this
appendix. Then the non-fading and slow fading M-ary FSK demodulation error rates
are derived in Section F.2. BFSK demodulation error rates for fast, flat Rayleigh fad-
ing are developed in Section F.3 and are extended to the M-ary case in Section F.4. Be-
cause both COMLNK and modemn digital receivers form the tone filters using discrete

Fourier transforms (DFTs)’, in section F.5 we investigate the effect of time sampling
on the M-ary FSK error rate.

F.1 GENERAL FSK RESULTS.

In an M-ary FSK communications link, the transmitted signal during the k™
modulation period is

t
= j A (Il ==k | ,
m(t) zk:exp[J(nkn f)t] [T ]

where Af is the tone spacing and T is the symbol period (i.e., the duration of a trans-
mitted tone). The transmitted tone is determined by the value of n;: n, ==x1 for
BFSK, n, =+1, £3 for QFSK, n, =+1, £3, £5, £7 for 8-ary FSK, and so on. The
rectangular function I1() is defined as

1 iflx]S%—

0 otherwise

H(x)={

Note that the exponential term in the expression for m(¢) represents a frequency offset
in the transmitted signal, so the carrier frequency per se is never transmitted (unless
sync symbol tracking is employed).

The received signal is the convolution of the channel impulse response function
and the transmitted modulation:

u(t)= rTm(t - h(t,1)dT ,
0

? This is one implementation option. COMLNK also provides the option of multiple filters centered at the
modulation offset frequencies of each of the M possible symbols. This configuration is well suited to
large tone spacings and enables use of independent-tone signaling.




where r is the mean received signal amplitude. This signal is then processed in tone
filters to determine which tone was transmitted. The output voltage of the i filter
during the k" symbol period is

(k+1/2)T

Zi=7 [ [u@) + n(t)]exp|[~j(inaf)t]dr .
(k-1/2)T

There is one such filter for each of the possible n, transmitted tones. The signal is de-
modulated by selecting filter with the largest output amplitude’.

The complex voltage n(z) is additive white Gaussian noise (AWGN) with the
usual properties:

(n(®))=0
(n(Hn())=0 ,
(n(t)n"(t")) = Ny 8 (1 1)
where N is the one-sided noise spectral density, and O () is the Dirac delta function.

The second equation results because the real and imaginary parts of AWGN are uncor-
related. The noise contribution to the i tone filter output voltage is then

(k+1/2)T

Ni== [n@exp[-j(inaf))dr .
T (k=1/2)T

Because n(t) is a complex, normally distributed random process with zero mean, N,
is similarly distributed. To complete the description of the tone filter output noise, we
need the variance and cross correlation of N, ,. The noise cross correlation is

, k+l/2)T k+1/T .
ci{\lf, = < N Ni'.k>=*7 J dp e~ AN f di’ TN <n(t) " (t,)> '
T (k-1/2)T (k-1/2)T

* This is true only for hard-decision demodulation, which is what is treated in this analysis. Coded sys-
tems often employ soft-decision demodulation, wherein the outputs of all M filters are used in subse-
quent processing.
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AWGN is delta-correlated, so this expression reduces to

oV - N, sin[%n(i—i’)AfT]_{No/T ifi’'=i
[F = 1o

T $nG-iNAT otherwise

for orthogonal signaling (i.e., Af T = positive integer and i —i" = even integer so the
argument of the sine function is an integer X ).

F.2 M-ary FSK IN NON-FADING AND SLOW FADING CHANNELS.

In a non-fading (AWGN) channel, the channel impulse response function imparts
a simple phase rotation on the signal:

T =e®8(1) ,

where the delta function indicates that the signal arrives with zero delay relative to its
nominal time-of-arrival, and the phase 0 varies slowly during the symbol period T as-

suming adequate frequency tracking in the receiver. The output voltages of the tone
filters are then

rol® 12T
Ziy=—— Jexp[jnAf(nk —i) t]dt + Ny
(k=1/2)T

The M-ary FSK demodulation error rate in AWGN is then given by the prob-
ability that any of the filters that do not correspond to the transmitted tone have a
larger output amplitude than that of the “correct filter”. This problem reduces to com-
puting the probability that any one of M —1 uncorrelated, complex, zero mean, nor-
mally distributed random variables has a larger amplitude than another uncorrelated,
normally distributed random variable with a non-zero mean. To compute this prob-

ability, we need the variances and cross correlation coefficients of the output voltages
for the M tone filters.

Assuming that the receiver noise is uncorrelated with both the transmitted
modulation and the channel fluctuations (if any), the cross correlation coefficients of
the tone filter outputs are separable into signal and noise contributions:

- * \_ ~S N
Cpr= <Zi,k Zi’,k> =Cy+Cy s
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where C}, is given above. Without loss of generality, we assume that the i filter cor-
responds to the transmitted tone (i.e., i = n,), and i’ represents any filter. The signal
contribution to the cross correlation coefficient is then

2 (k+1/2)T (k+1/2)T 2 [1 o

oS I Idt S mirn-inaf T sm[zrcAfT(nk i )]

beg JaJarereon LR
(k=1/2)T (k=1/2)T 2 Ry —1

In the limit that i’ = n,, this expression reduces to r? which is the signal energy out of
the filter corresponding to the transmitted tone. The signal contribution to the output
energy of the other filters is identically zero when the signaling is orthogonal:

Af T = aninteger > 0 o
. ) (orthogonal signaling) ,
n, —i’ = aneven integer
where the dimensionless quantity Af T is the normalized tone spacing.

The non-fading M-ary FSK demodulation error rate is now easy to compute.
The output voltage of the i filter corresponding to the transmitted tone (in develop-
ments below we often refer to this as the “correct filter”) is

Zl,k = re'/e + Nl,/( .
and the output voltages of the M —1 “other filters” are
Zing =Npy

where Z;., and Z;., (i’ #i”) are uncorrelated and thus are independent, normally
distributed random variables. The voltage Z;, from the correct filter is a complex,
zero mean random process plus a complex constant, so its signal plus noise (S+ N)
amplitude g, = l Zi,k‘ has a Rician probability density function:

2a, a,2 +r? 2ra
a, )= exp| — I ,
fsen(a) No/T P{ Ny /T 0 Ng/T
where [ () is the modified Bessel function. The voltages from the other M —1 tone

filters are complex, zero mean random variables, so their amplitudes aq; = { Zi,,kl, com-
prised only of noise, have Rayleigh probability density functions:

2q, a,2
= exp| — =2, M) ,
)= g | =2
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where fy (") denotes the probability density function of the amplitude of any one of the
noise-only filters. In a moment we need the cumulative distribution of any one of the
noise-only amplitudes. This Rayleigh distribution has the familiar form

a 2
FN(a)=JfN(a’)da’=1—exp|:—g—T:| .
! N

0

It 1s easier to compute the probability that the correct filter is selected first and
then subtract this probability from one to get the error rate. This is the probability that
the maximum of the M —1 noise-only amplitudes is less than that of the correct tone
filter with signal plus noise. The probability of selecting the correct tone filter is

[ o] al
P, = [day fo,n(a) [ dag fyma (@)
0 0

where fy 1., () is the probability density function of the largest of the M —1 noise-
only amplitudes. The second integral (over a;) is just the cumulative distribution of the
maximum noise-only amplitude which is

FN,max (a) = [FN(a)]M—l :

The probability of correct demodulation is then
It M-1
P = st+N(a)[1—exp(—a2T/ No)| da .
0

This remaining integral is performed by expanding the term in square brackets in a bi-
nomial series:

With this expansion, the probability of choosing the correct filter is

M- (_nkH M -1 2
= k+1 k k+1) Ny
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The second term on the right-hand-side of this equation is the probability that the filter
with the largest amplitude does not correspond to the transmitted tone. This probability
is equal to the M-ary symbol error rate.

For each transmitted symbol there are log, M channel bits. The average number
of channel bits in error given a symbol error* is £ M/(M —1). Thus the channel bit er-
ror rate P, is related to M-ary symbol error rate by [Viterbi, 1966]

M2

P = 1-P) . F.1
In deriving this expression, 1t is assumed that every incorrect filter is equally likely to
be chosen when a demodulation error occurs. This is the case here because the average
noise energy out of each incorrect filter is the same. This is not the case in fast fading,
however, where signal energy from the correct tone filter is spread preferentially into
adjacent incorrect filters. Thus the expression in Equation (F.1) does not hold in gen-
eral.

One more adjustment is necessary to transform from M-ary symbols to channel
bits. The quantity rZT/No is the symbol energy-to-noise spectral density ratio. This is
related to the channel bit energy-to-noise spectral density ratio (E_, / Ny) by the num-
ber of channel bits per symbol (i.e., log, M):

E, 1 r7T
N, log, M N,

With these transformations from symbols to channel bits, the M-ary FSK channel bit
error rate for AWGN channels reduces to

S D012 T (k- Diog, M E,
& k(M — k)] p[ kN,

:l (M-ary FSK, AWGN) .

4 This ratio is derived as follows. For any transmitted symbol, there are M — 1 equally likely symbol er-
rors in non-fading or slow fading channels. In each of the log, M bit positions there are exactly M/2
bits in error, when averaged over the ensemble of M —1 symbol errors, so the number of bit errors is
(M/2)1log, M . The total number of bits contained in the M —1 symbols is (M —1)log, M. The ratio
is obtained by dividing the number of bit errors by the total number of bits.



For BFSK (M = 2) this expression reduces further to the familiar form

P, = lexp [— &} (BFSK, AWGN) .
2 2N,

This formula is similar to that for DPSK demodulation except that 3 dB more
signal power is needed with BFSK to achieve the same error rate. So why would one
ever chose FSK modulation over DPSK modulation? One reason is that M-ary FSK
demodulation in non-fading channels becomes more efficient as M increases (i.e., a
lower value of E_, /N, is required for a given bit error rate). This is shown in Figure
F-2 where the channel bit error rate is plotted for a few values of M (2, 4, 8, 16, and
32). The relative improvement decreases with increasing M, and there is about one dB
advantage in 16-ary FSK relative to 8-ary FSK in AWGN. Also, 8-ary FSK is about
one dB better than DPSK in AWGN. Thus 8-ary and 16-ary FSK have become the
standard modulation techniques for some systems.

It will be seen that M-ary FSK demodulation performance degrades in fading
channels as does the performance of all signalling techniques. First, for slow fading
where the channel decorrelation time is much longer than the symbol period, the aver-
age demodulation error rate is given by averaging the AWGN expression over the
fading distribution:

(BY=[P(S) f(S)dS
0

where 7 is the channel bit energy-to-noise spectral density ratio in the absence of fad-
ing. The probability density function of Rician fading f(S) is given in Equation (2.2a),
and the resulting average M-ary channel bit error rate is

& MM =2) 1 IR e Ead
)= 2OV 1+yk(1—R)exP[ 1+'ykk(1—R)} (Rician Fading)

where R is the “Rician index” defined in Equation (2.2b), and

k-1 E
=——log, M=
Yk X g2 Ny

The 8-ary FSK demodulation performance in slow Rician fading is plotted in Figure
F-3 for several values of the scintillation index S,. There curves are nearly identical to
those for DPSK modulation performance in Rician fading plotted in Figure B.5, and
comments made about that figure apply here.
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Figure F-2. M-ary FSK demodulation error rate for non-fading (AWGN) channels.
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The real advantage of M-ary FSK over DPSK is seen in fast or frequency selec-
tive fading channels. The AWGN and slow fading demodulation error rates given
above do not explicitly depend on two important properties of a transmitted FSK wave-
form: tone spacing and frequency hopping. The first of these provides a powerful
mitigation technique for fast fading and the second for frequency selective fading.
Neither is applicable to a DPSK waveform’, and the two together allow much more
robust performance of FSK in severe fading channels than is possible with DPSK.

BFSK demodulation performance in fast fading is discussed in Section F.3 and is
extended to M-ary FSK in Sections F.4 and F.5. BFSK performance in frequency se-
lective fading is analyzed in Appendices G and H.

F.3 BFSK IN FAST FADING CHANNELS.

In a fast, flat fading channel, the channel impulse response function can be writ-
ten as A(z,T) = h(r)d(T), where the Delta function indicates that all of the signal arrives
with zero delay relative to its nominal time-of-arrival, and A(t) is referred to as the
channel response function. For Rayleigh fading, A(z) is a zero mean, normally distrib-
uted random variable.

Under the assumptions of perfect time and frequency tracking, the outputs of the
two BFSK tone filters are

(k+1/2)T
Z,== [exp[jnaf(n, —i)t|n(tyde+ Ny
T(k—l/Z)T

where r is the mean received signal amplitude. The BFSK demodulation error rate is
then given by the probability that the filter corresponding to the transmitted tone has a
smaller output amplitude than does the other filter.

For Rayleigh fading, this is just the probability that the variance of one complex,
normally distributed random variable is smaller than that of another. The complication
here is that these two variables are correlated, as we show in the developments below.

5 One can frequency hop DPSK waveforms, but the hop rate must be slow compared to the modulation
rate so there are multiple DPSK symbols per hop. Frequency hopping provides a signficant advantage
to FSK demodulation in frequency selective fading channels because there can be just one symbol per
hop.



The signal contribution to the output of the correct filter (i =n,) is

(k+1/2)T

r
S== [h@®a , (F.2)
T(k—I/Z)T

and the signal contribution to the output of the other filter (i # n,) is

DT
So== | ™ pmyar (F.3)
T(k—1/2)T

The variance of §, is

. 7’2 (k+1/2)T (k+1/2)T .
(S8 )y==5 [dr [ar'{h)K" () .
(k=1/2)T (k=-1/2)T

For the stationary channels considered in this report, the autocorrelation of the channel
response function is

()R (@) =pl=17)
and the expression for the variance of §; collapses to a single integral:

1

(S87) =27 [p(TE)(1-E)dE =R, .

0
Similarly, the variance of S is

2 (k+1/2)T (k+1/2)T

(SoS3)==5 Jdt  [dr'(ne)h(¢))exp[x2minf(e—1)]
T (k=12)T (k-1/2)T

which, for stationary channels, reduces to

1

(S053) =22 [ p(TE)(1 - ) cos(w,,E) dE = r°R, |,

0

where w,, = 2nAf T. The cross correlation coefficient of Sy and §j is

. 7‘2 (k+1/2)T (k+1/2)T .
($i85)=mz [dt  [ar {n@)R (t"))exp(F2mjafr) .
T (k=1/2)T (k—-112)T
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After some manipulation this reduces to
<S1 So> 2 Jp Sln O)Mé)dé_r 3 -

With the inclusion of AWGN, the variance of the output voltage of the filter
corresponding to the transmitted tone (0;"), the variance of the output of the other fil-
ter (0(2)), and the cross correlation coefficient (C) are

of =r*[R +y7"]
o =r’[R+v7"] , (F.4)
C=r’R,

where 7 is the channel bit energy-to-noise spectral density ratio (E_, / Ny). The cross
correlation term goes as r? R; rather than rz(R3 +y"]) because the noise out of the
two filters is uncorrelated.

The BFSK demodulation error rate in fast, flat Rayleigh fading is then the prob-
ability that the output amplitude of the filter corresponding to the transmitted tone is
less than that of the other filter. This probability is derived in Appendix D in terms of
the variances and cross correlation coefficient. Writing this probability in terms of the
R integrals defined above gives the following result:

()= 5|1
2 \/(Rl +Ry+2y7) — 4R}

Unfortunately, the R integrals cannot be written in closed form for the Gaussian
Doppler frequency spectrum, but such closed form expressions are possible for the
other spectra in given Chapter 2. Because the f ~* spectrum is the DSWA standard for
flat fading [Wirtwer, 1980], we give the R integrals for this case:

(BFSK, Fast Rayleigh Fading) .
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R = —2-2-[21"4 ~34(T, +3)e "]
I
221} - 3T} + 203 (T2 +312) + o} +[T +3T} - 603 T7 - 0}(T, +1) ™ }

R
’ (T42 +co,zw)3

377 + @y — T2 +3T2 + 0} (T, + 1))

(77 +0),2V,)2

Ry =2(-D¥T : (F.5)

where @, =2RAf T, T, = 04T/, and 04 (04 =2.146193--.) is a numerical constant
defined in Section 2.1.

In the limit that the fading is slow (T << 1), R, =1, R, = Ry =0, and the BFSK
demodulation error rate reduces to the familiar slow Rayleigh fading expression:

(P)=(2+v)"  (BFSK, Slow Rayleigh Fading) .

BFSK channel bit error rate curves for several values of the ratio 1, /T, and
for an f~* Doppler frequency spectrum are plotted in Figure F-4 for minimum tone
spacing (Af T =1) and in Figure F-5 for three times the minimum tone spacing
(Af T =3). As is the case for DPSK demodulation, the BFSK curves exhibit an irre-
ducible error rate which depends on the value of 1, /T, and the Doppler frequency
spectrum. Unlike DPSK, the irreducible error rate can be lowered by a means other
than increasing the channel bit rate (i.e., increasing 1, /T, by decreasing T,,), namely
by increasing the tone spacing. For example, the irreducible error rate for 14 /7, =1
is about 0.07 for the minimum tone spacing but drops to 0.005 when the tone spacing is
increased to Af T =3. '

To summarize these results, the fast fading BFSK irreducible error rate ((P,)
with y — o) is shown in Figure F-6 versus the normalized decorrelation time T /T,
for three tone spacings (Af 7T =1, 3, and 10) and for an f 4 Doppler frequency spec-
trum. Obviously, the irreducible error rate decreases as the tone spacing increases. The
fading causes a Doppler frequency spread in the received signal, and some of the signal
energy is spread from the correct filter to the other filter. The further the tones are
separated in frequency, the less signal energy can be spread into the wrong filter.
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An equivalent view of the Doppler frequency spread is obtained by considering
the tone filter equations. In the correct filter [Eqn. (F.2)], the presence of the channel
response function in the integrand reduces the signal energy at the output of the filter,
primarily because of the random phase fluctuations contained in k(t) prevent the signal
vector from summing coherently during the integration period. In the other filter,
there is a residual phase rotation that in the absence of fading has the effect of wrap-
ping the signal vector around a circle Af T times. Thus for orthogonal signaling and no
fading, the output of the other filter has no signal contribution because the signal vec-
tor is wrapped around to “bite its tail” during the integration period. With random
phase perturbations caused by fading, the head does not end up exactly at the tail, and a
signal contribution to the filter output results. Thus the fading causes a reduction in the
signal energy out of the correct filter and an increase in the signal energy out of the
other filter.

The effect of increasing the tone spacing is to decrease the effective integration
period to T, / (AfT) because there are Af T complete phase rotations during the chan-
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nel bit period. Thus, to first order, the effect of increasing tone spacing is to simply
shift the Af T =1 irreducible error rate curve to the left by a factor of AfT.

Of course this does not explain the odd change in the shape of the curves as Af T
increases. This change is caused by the signal energy out of the other filter, as illus-
trated in Figure F-7 where the filter output signal energy is plotted versus t,/7,,. Ob-
viously the signal energy out of the filter corresponding to the transmitted tone does
not depend on the tone spacing, but the signal energy out of the other filter is very sen-
sitive to this parameter. It is the behavior of the output signal energy of the other filter
that causes the odd shape of the irreducible error rate curves.

Before leaving BFSK performance in fast fading there is one other point that we
want to make. In principle this analysis can be extended to M-ary FSK demodulation.
In fact we already have almost everything we need with the exception of the cross cor-
relation of the outputs of filters that do not correspond to the transmitted tone. But it is
these cross correlation terms that are the problem.
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Figure F-7. BFSK filter output signal energy in fast Rayleigh fading channels.
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F.4 M-ARY FSK IN CONTINUOUS FAST FADING CHANNELS.

In Rayleigh fading the outputs of all the M-ary filters are zero-mean, normally
distributed random variables with non-zero correlation coefficients. Hence the calcula-
tion of the probability that one filter output amplitude is less than the maximum am-
plitude of all the other filters requires the calculation of the joint probability density
function of M correlated Rayleigh amplitudes. This function must then be integrated
over an M-dimensional space defined by a; > max (az,a3,- - M). With the exception
of the M =2 case, for which an exact expression for the error rate is calculated in Ap-
pendix D, this may not be a tractable mathematical problem.

To estimate the fast fading M-ary FSK demodulation error rate we first assume
Rayleigh fading so that the output signal plus noise voltages of all M filters are com-
plex, zero mean, normally distributed random variables. We then compute the mean
signal plus noise energy at the output of the filters and calculate the demodulation error
rate with the approximation that the cross correlation between the filter outputs is neg-
ligible. To estimate the effect of this approximation, we compute the magnitude of a
few cross correlation coefficients. We find that while the correlation between the cor-
rect filter and the other filters is indeed small, the correlation between the outputs of
incorrect filters can be large and ignoring these terms does affect the calculated error
rate. In this section we consider analog filters with continuous Fourier transforms. In
Section F.5 we consider filters implemented with discrete Fourier transforms.

With this approximation, the M-ary FSK demodulation error rate problem re-
duces to finding the probability that the maximum amplitude of M —1 uncorrelated,
zero mean, normally distributed random variables is less than that of another zero
mean, normally distributed random variable. As was the case for M-ary demodulation
in non-fading channels, it is easier to compute the probability that the correct filter has
the largest amplitude. This probability is

P = st(a)Fo(a)da ,
0

where fg(-) is the probability density function of the amplitude of the correct filter,
and Fp () is the cumulative distribution of the amplitude of the other filters (i.e., it is
the probability that the largest amplitude of the other filters is less than the argument).
For uncorrelated and hence independent filter outputs, F,(-) reduces to the product of
the cumulative distributions of the M —1 filter output amplitudes:
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M

Fyla)= HF,',[(a) s
i=]
i#l

where F;,(-) is the cumulative distribution of output amplitude of the i" filter given
that the I filter is the correct one. This notation is necessary because the signal energy

out of one of the other filters depends on how far away in frequency that filter is from
the correct one. :

We have already calculated the variance of the output voltages of the M filters,
although a slight generalization is needed. These results are given in Equation (F.4).
The required generalization is that the R, integral becomes

Ry (k)= 2} p(TE)(1—&)cos(kw &) dE (F.6)
0

where k is the distance of the other filter from the correct filter [k = (i —[)/2 where i
and [ are odd integers]. The formula for R, (k) for an f~* Doppler spectrum is given
by the R, expression in Equation (F.5) with w,, replaced by kw,,. The R, integral,
defined in Equation (F.4) for the output energy of the correct tone, remains the same.
To simplify the notation, we rewrite the filter output variances as follows:

Mo =r[Ri +77]
e =r?[Ry (k) +v7]
where we note thatR,(0) = R so Lo = l;—g-

These equations define the diagonal elements of the filter covariance matrix. The
off-diagonal elements are given by the filter cross correlation coefficient. Assuming
that the n, tone is transmitted, the cross correlation coefficient of the filter output sig-
nal contributions is

Cfi' = <Si5;> J
where
, TI2
Si== [n@) exp[—jnAf(no —i)t]dt X
T 115
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We have already shown that the cross correlation of the noise is zero for orthogonal
signaling. After some manipulation the cross correlation of the signal output reduces to

Coy = CO—M%—!'—) {P(TC)Sin (o i-i)(1- Q]COS{%C‘)M[”O — i+ i')]C}dC

= r2R4(n0,i,i,)
In the limit that " =i this expression reduces further to
S _ 2p ¢
C[,i =r Rz(l) .

which is equal to the expression above for yu, (k =i) except that when i’ =1 the noise
variance is r2 /vy rather than zero.

For an f~* Doppler frequency spectrum, the R, function is given by the rather
complicated expression

8700 | (ng = iY12T2 + @3 (g =] (mo 1272 + 03, (ng = 1)°]

Ry(ng,i,i’)= — -
i~ 4T + 02, (n _iY 472 4+ 02 (ne — iV T
ming 4 TOyln

(o —)[4T3 + 1277 + (14 T, )} (no - ') | ™

[472 + 0, (n, —i’)2]2

ng —i)z]e—T“}

(n — 4T +12T7 +(1+ T, )0k (

+ > 5
(472 + 03 (ny - )]

Later we will evaluate this expression to assess the impact of neglecting the cross cor-
relation coefficients in the error rate calculation.

The arithmetic of the M-ary FSK error rate problem is made easier by consid-
ering the probability distributions of the output energy (rather than the amplitude) be-
cause the energy has an exponential distribution when the amplitude is Rayleigh dis-
tributed. Thus the probability density function of the correct filter output energy is

fs(x)= —LexP[——)—c—} ,
Lo Lo

and the cumulative distribution function of the output energy of the k™ other filter is
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Fo,(x)=1- exp|i-—x—] .
Ky
Now we are in a position to estimate the M-ary FSK fast fading demodulation

error rate taking into account the mean output energy of each filter as a function of its
distance from the correct filter.

As an example, the filters for an 8-ary FSK receiver are shown schematically in
Figure F-8 where the horizontal line segments represent the 8 filters spaced evenly in
frequency. The vertical arrows represent transmitted tones, and under each line seg-
ment is the corresponding value of k, the distance of the filter from the transmitted
tone. There are only four cases, because the fifth case with the transmitted tone in the
fifth position from the left is mathematically identical to case 4, the sixth case is
mathematically identical to case 3, and so forth.

For case 1 the probability that the energy out of the correct filter is larger than
that out of any of the other filters is

hod 7
P = [fs)[IFp.(x)dx . (Casel)
0 k=1 .

Case i
1

2 3 4 5 6 7

k=0 1

,
- k=-t O 1 2 3 4 5 6
. Y _____
k=-2 -1 0 2 3 4 5

1
. o __r_
0

k= -3 -2 -1

Figure F-8. 8-ary FSK tone filters.
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For case 2 there are two filters with a distance of +1 from the transmitted tone, but
one can see from Equation (F.6) that the output filter energy depends only on |k |.
Thus for case 2 the probability that the correct filter has the maximum energy is

o0 6
P = [ fs(x)Fp, (0[] Fpp(x)dx . (Case2)
0 k=1

Similarly, the probabilities of correct decision for cases 3 and 4 are

P.= j fS(x)HFOk(x)HFOk(x) dx (Case 3)

k=1 k=1

P = j fs(x)HFO k(x)HFO ((x)dx . (Case 4)

k=1
In general, the probability that the correct filter has the largest output energy is

2 Mi2-1 M=i-1
F=ar X Jf5<x>HF0k<x> IEROLE
1=0 k=1
assuming that the transmitted tone is uniformly distributed in the M possible positions.
(The leading factor of 2/ M in this equation is there because there are M /2 cases and
each case is equally likely.) Subtracting this probability from unity gives the M-ary
character error rate.

In fast fading the relationship between symbol error rate and the channel bit er-
ror rate is not given by the simple expression in Equation (F.1). In deriving that ex-
pression, it is assumed that when a demodulation error is made all incorrect tone filters
are equally likely to be selected. This is only the case when all incorrect filters have
equal output amplitudes on the average. When the channel bit error rate is less than 50
percent in fast fading, demodulation errors are most likely to be made by choosing a
filter adjacent to the correct filter because these adjacent filters have the largest aver-
age output of all the incorrect filters. This changes the average number of channel bit
errors per demodulation symbol error.

In the limit that only adjacent filters are chosen, we can compute the ratio of the
channel bit error rate to the symbol error rate. For each of the M —2 interior filters,
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there are two adjacent filters that can cause errors with equal probability. For the two
end filters, there is only one adjacent filter that causes errors. Thus over the ensemble
of M transmitted symbols, there are 2+ 2(M —2) = 2M -2 equally likely symbol er-
rors. The average number of channel bit errors per symbol error is found by counting
the number of bit errors for each possibilty and dividing by the total number of bits. It
can be seen that the total number of bit errors, averaged over the ensemble of 2M -2
symbol errors, is given by®
log, M
2log, M +4log,(M/2) +8log,(M/4)+--+ M= Y, 2log,(2'* M) .
k=1
The total number of bits contained in the 2M -2 symbols is 2(M —1)log, M. Thus

when only adjacent symbol errors are likely, we obtain the following relationship be-
tween channel bit error rate P, and symbol error rate 1-FP,:

logiM 25" log, (27 M)
p, ==l 1-P) .
¢ (M -1log, M (=F)

A few examples illustrate the difference between the AWGN formula,
%M/(M —1), and the expression given above for P, /(1 - P,). For 8-ary FSK, the
AWGN formula predicts this ratio to be 44 or 0.57, whereas assuming adjacent filters
cause all demodulation errors results in a value of 144, or 0.52. This difference is even
larger for 16-ary FSK where the AWGN formula predicts a ratio of 8{5 or 0.53,
whereas the adjacent filter assumption results in a ratio of 134, or 0.43. Of course the
ratio is 1 for BFSK, and one can show that it is 24 for QFSK in either case. Thus for
M > 4, use of the AWGN formula relating channel bit error rate to demodulation er-
ror rate will provide an upper bound to the channel bit error rate. To get around this
analytic problem when comparing COMLNK results with theory, we will use de-
modulated symbol error rates rather than channel bit error rates for the 8-ary and
16-ary FSK cases.

For Rayleigh fading, all of the terms in the expression for correctly demodulat-
ing the M-ary FSK signal are of the form

S There are 2 cases where all log, M bits are in error, there are 4 cases where log, (M/2) bits are in er-
ror, there are 8 cases where log, (M/4) bits are in error, and so on. Finally, there are M cases where
there is only 1 bit in error.
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[>e]

By(Vyy)= e 1‘[(1 e )dx (F.7)
0
where V,; ={vq, Vy,*+, V1 }. Dr. Scott Frasier of Mission Research Corporation
[Frasier, 1996] pointed out that this integral can be written in terms of two similar in-
tegrals:

= T -x/vy M -x/v T x(Hvg+1/v)) M ! —x/v
Py(Vy)= e TT(1=e™*% )dx~ [ [1(1-e"%)dx
0 k=2 0 k=2
VoV
=PM—I(VO’Vz""’VM—l)_PM—][V 0+i) ’VZ""’VM-IJ
0 tVi
where

2
\Y

P(vy,v,)=—2

2("0 Vl) Vo +V;

Thus the integral in Equation (F.7) can be evaluated by recursion. The probability of
selecting the correct tone filter is now evaluated as

Mi2-1

2
3=‘M’PM(V0,V1,'--,VM—1)+_AZ E{PM(VO’VI’”"VI-I’VO"“’VM—I—I) ’

where v, =, /ug and vy =1.

Before proceeding with M-ary FSK error rate results, we need to explore the
effect of our approximation that the filter outputs are uncorrelated. Assuming a tone
spacing of Af T =3, the filter output energy and cross correlation coefficients are
plotted in Figures F-9 and F-10, respectively, versus decorrelation time normalized by
the symbol period, T,/T. The output signal energy is plotted in the first of these fig-
ures for the correct filter (i = n), the two filters adjacent to the correct filter
(i=ny =£2), and the next four filters closest to the correct one (i =ny £4 and
i =ny £ 6). As expected, the adjacent filter has the largest average signal energy of all
the other filters, and the average signal energy decreases as the distance |ny —i| from
the correct filter increases. When T, /7 is less than 1072 or so, the signal Doppler
spread is so large that signal energy is spread almost uniformly, and all filters have
about the same mean signal energy.
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Figure F-9. FSK filter output signal energy in fast Rayleigh fading channels.
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Figure F-10. FSK filter cross correlation coefficient in fast Rayleigh fading channels.

T l||H|I| T IIIIIII

1 rlTlll]

T TTTETT ¥ IIIIIII] L BLRRLAL T T TTTTE

M-ary FSK n46
AfT=3 T
Fast Rayleigh Fading

~* Doppler Spectrum

| el ol Lod oy

1 Illlll|| i lll|IHI (BRI

<3 vl

Y
o
[

102 10" 10°
Normalized Decorrelation Time, ro/T

10’

1 14 lllllll [ Illllll T 1 ll]llll T IR
| M-ary FSK ]
= A Tes e
- Fast Rayleigh Fading P (nyn #2.n:24) ]
|~ Doppler Spectrum ]
- p(ngnyng2) ]
- ) ~ -
_ plngnyngtd) ~. N
= N o
- K

1 L |||lHl i :léllllll‘ 1 1 lllll!‘ 1 LA 111

10% 102 107 10° 10°

Normalized Decorrelation Time, T, /T

E-27




The cross correlation coefficient, plotted in Figure F-10, is given by
|R4 (ng,i,i )l

\/}2 —1R7 no—z)

-th

no,ll

where R,(ng —1i) is the output energy of the i filter (normalized to ) given that the
ngy tone is transmitted. We include the absolute value in this expression so that we can
plot the correlation coefficient on a logarithmic scale. It is obvious in the plots of
p(ng,i,i") where R, changes sign. The correlation between the correct filter output
signal and that of the four closest filters, p(ng,ng,n +2) and p(ng,ng,ny £ 4), is al-
ways small, peaking at a value less than X, so the other filter outputs are essentially
uncorrelated with the correct filter output. The problem is that the correlation between
two adjacent other filters, p(ny,ny +2,n, £4) for example, is large for t,/T > },.

When we neglect the correlation, we are essentially increasing the probability
that one of those filters will have an output amplitude larger than that of the correct
filter. Thus our theoretical results for M > 2 are an upper bound on the M-ary FSK
demodulation error rate. For 14/T < 4, the cross correlation coefficient is small, and
our upper bound should be close to the true demodulation error rate. For 1t,/7 >10,
the mean energy of the other filters is very small compared to that of the correct filter,
and again our upper bound should be close to the true value. It is for decorrelation
times in the critical range }{;<1,/7T <10 where we will see the largest variation be-
tween our approximate theoretical results and measured error rates from COMLNK or
actual hardware.

To illustrate the effects of fast Rayleigh fading on high-order frequency shift
keying, we present calculated channel bit error rate results for 8-ary FSK. Keep in
mind that these analytic results are upper bounds on true performance because the
analysis ignores the effects of correlation between filters and also ignores the change in
the relationship between symbol and bit error rates due to Doppler spreading.

The channel bit error rate for 8-ary FSK in fast Rayleigh fading is plotted in
Figure F-11 for minimum tone spacing (Af T =1) and in Figure F-12 for three times
minimum tone spacing (Af T =3). An f~* Doppler frequency spectrum is used for
these results. The fast fading curves are plotted for three values of the ratio of the
channel decorrelation time to the channel bit period, where T, is related to the symbol
period T by the expression T, =T/log, M
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minimum tone spacing.
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Each tone in 8-ary FSK, for example, represents 3 channel bits, so the channel
bit period is one-third of the symbol period. The use of the ratio ty/T,, (rather than a
ratio involving the symbol period T) and the channel bit energy-to-noise spectral den-
sity ratio E_, / N, (rather than the symbol energy) allows a direct comparison of these
fast fading curves to those presented earlier in this appendix for BFSK or in Appendix
B for DPSK. All curves are for an equivalent channel bit rate.

The shift to the right in the 7, /T, =1 curve in Figure F-12 is caused by the loss
in signal energy at the output of the correct filter due to channel phase fluctuations.
This loss is 3.2 dB for 1, /T, =1 and the f™* Doppler frequency spectrum. The irre-
ducible error rate is caused by the presence of a signal component in the outputs of the
other seven filters. By comparing curves in Figure F-11 with those in Figure F-12, one
can see a significant reduction in the irreducible error rate as the tone spacing is in-
creased.

A comparison of these results to those for BFSK shows what initially may be a
surprising result: 8-ary FSK has a higher irreducible error rate for a fixed tone spac-
ing and value of T, /T, than does BFSK. For a constant channel bit rate, 8-ary FSK
uses tones that are three times longer than used for BFSK and thus are three times
closer in frequency for minimum tone spacing. Hence for a given decorrelation time,
more signal energy is spread into adjacent filters with 8-ary FSK than with BFSK, and
a higher irreducible error rate results.

This result is summarized in Figure F-13 where we plot the irreducible error
rate for BFSK and 8-ary FSK for three values of the tone spacing. The BFSK results
are the same as plotted in Figure F-6. By comparing the demodulation error rates of
8-ary FSK with Af T =3 to that of BFSK with Af T =1 we are comparing modulation
formats with exactly the same frequency separation between the tones (Af is the same
in absolute units). For a fixed value of Af, 8-ary FSK does have a lower irreducible
demodulation error rate than does BFSK. The penalty in this case is that the 8-ary FSK
waveform has a bandwidth that is about 2.6 times larger than that of BFSK.

F.5 M-ARY FSK IN SAMPLED FAST FADING CHANNELS.

Modem digital FSK receivers form tone filters by first sampling the signal and
then performing discrete Fourier transforms (DFTs). This introduces an effect that is
not in the previous analysis for the continuous case. This is the loss that results because
the signal is sampled before the frequency shift n, Af is removed.
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Figure F-13. Irreducible BFSK and 8-ary FSK demodulation error rates in fast
Rayleigh fading channels.

Another motivation for this analysis is to investigate whether a portion of the
Doppler frequency spectrum might be cut off in COMLNK because the simulation up-
dates the channel at a rate slower than the demodulator A/D sample rate in most cases.
The default channel update rate in COMLNK is 40/, which is based on the DSWA
specification for time sampled channels [Wittwer, 1980; Dana, 1988]. This rate may be
modified slightly in COMLNK so that the A/D sample rate is an integer multiple of the

channel update rate (i.e., so there are an integral number of A/D samples per channel
update period).

While a channel update rate of 40/ 1 is adequate to reproduce the temporal sta-
tistics of fades, we want to ensure that it is also adequate to represent the effect of
Doppler spreading in FSK filters. The results below show that this channel update rate
is indeed adequate as the irreducible error rate agrees closely with the results from the
previous subsection for the continuous case.

To simplify this analysis slightly, we make two assumptions that limit the channel
update period in our analysis: The number of A/D samples within the channel update
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period and the number of channel updates within a modulation period are required to
be integers. To do this we increase the number of channel updates per decorrelation
time, starting at 40.

In the analysis, the channel update rate is limited to not exceed the A/D sampling
rate. More rapid channel sampling would account for channel decorrelation within a
single A/D sample. On the other extreme, the minimum channel update rate considered
here is the FSK symbol rate. Less rapid channel sampling corresponds to slow fading
with no appreciable Doppler spread.

The signal contribution to the k* A/D sample that is used in the DFTs is

r (k+1)At
Si=— [m()h(t)dt  (-Np/2<k<Np/2-1) ,
At kAt
where m(-) is the transmitted tone and A(-) is the channel response. For fast, flat fading
we only need to consider a single transmitted tone, so

m(t)=e! ™Y Tt/ T) ,

where nyAf is the tone frequency. To actually evaluate the expression for S, in a
simulation, it is assumed that the integral is separable into the product of two terms:

1 (k+J1)At 1 (k+JpAz

Sy=r— |m(t)dt— |h(t)dr .

A At n
The mean power of the first integral is less than unity because the received signal has a
residual frequency of nyAf (assuming ideal frequency tracking) after downconversion
to baseband. Thus there is a residual phase rotation of the signal during the sample pe-
riod Ar. The second integral represents the effect of channel decorrelation during the
signal sample period. Before proceeding with the FSK error rate, we need to investi-
gate the statistics of these two terms.

F.5.1 Sampling Loss.

The first term in the expression for the A/D samples is denoted S‘(kAt) where

) ; (eDar
S(kAt)zA—t [m(r)ar .
KAr
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After substituting the expression for the transmitted tone, the sampled signal is

sin[$r0,, / Ny
[$n00y / Ny ]

where ®,, =2nAf T and the k +% term in the exponential just shifts the time refer-
ence to the center of the samples. The mean power of S(kAr), which is less than unity,

gives the sampling loss assuming that the n; tone was transmitted. Assuming all tones
are equally like to be transmitted, the average sampling loss is

fvi, sin®[$(2i - D)oy, / Nr]
5 [ei-Dey, /N T

recognizing that the sampling loss is the same for *n;. A table of sampling loss values
for the minimum tone spacing (Af T =1) is given by Bogusch [1989] for a few values
of M and Ny . The loss depends only on the ratio Af T/Ny, so the sampling loss for
other than the minimum tone spacing can be found from the table for some cases.

b

=2
SM

The average sampling loss is only meaningful for non-fading or slow fading
channels where the demodulation error rate is independent of exactly which tone is
transmitted. In fast fading, however, the demodulation error rate does depend on the
transmitted tone, and the sampling loss per tone is applied for each transmitted tone.

F.5.2 Statistics of “Supersampled” Channels.

The second term in the expression for the A/D samples is denoted A(kA?) where

. 1 (k+1)At
h(kAt) = [n(r)dr .
kAr

When the decorrelation time is so small that it is necessary to perform multiple channel
updates per A/D sample period, the channel in COMLNK is referred to as “supersam-
pled.” The purpose of this subsection is to calculate the statistics of the supersampled
channel.

Because the channel response function 4(z) for Rayleigh fading is a complex,
zero-mean, normally distributed random process, the supersampled channel response
h(kAt) is similarly distributed, but with different second-order statistics. The auto-
correlation function of A(kAr), denoted C,, is
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. . ] (DAL (DA ,
C,[(k = 1)Ar] = (h(kar)h (zA;)>=F Jar [ar (Wow' @) .
kAt 1A

After some manipulation, this reduces to

(k80 = [{p[(6- K]+ pl(c+ KA} 1-0) k|

where K =k —1[ and p(-) is the temporal autocorrelation function of the channel re-
sponse function. The supersampled autocorrelation evaluated at zero offset,

1
C.(0) = 2[ p(CAr)(1-L)dg
0
is the reduction in the signal energy within an A/D sample due to the decorrelation of
the channel within that sample. An expression for C,(0), valid for a channel with an

™ Doppler frequency spectrum, is given by the R, term in Equation (F.5), where for
this case T, = 04 T/Np 1.

F.5.3 M-ary FSK Channel Bit Error Rate.

Calculation of the M-ary FSK channel bit error rate for time-sampled signals is
essentially identical to the calculation for continuous signals. The only difference is in
the formulas for the output signal energy of the filters. Once these values have been
computed the error rate calculation is the same as outlined in Section F.4.

The signal contribution to the output of the n™ DFT filter, given that the n, tone
was transmitted, is

Npl2-1 .
Sp(n,ng) = NL > S(kAr)h(kar)exp[~jmn(k + L) Af Ar]
T k==Ny 12
There are M; A/D samples per channel update and M, channel updates per modulation
period (so M;M, = Ny). After accounting for the difference in the A/D sample rate
and the channel update rate, the signal contribution to the DFT output is

M,-1

Splmng)=r /LS(HO)CXPIZM}YVL 3 ﬁ[(—NT/2+lM1)At]D(l,no,n) :

4NT T =0




where

sin? [2ng,, / Ny |

[%nOCDM / NT]2

Ls(no) =

is the sampling loss when the r; tone is transmitted, and
=Ny 124+(1+1)M,~1 i(n~ —n)o,k
D(l,ny,n) = D exp ‘:L(_O___)L
k=~Np/2+IM, 2Ny

is the sum of the residual phase rotations within a DFT tone filter during the M, peri-
ods when the channel response function is constant.

The signal contribution to output energy of the DFT tone filters is

E(ng,n)= <SD(”0’”)SZ(”0a”)>
| Mam1My- . .
=r’Ls(ng)—5 3, > C.[(1-1)MAt] D(l,ng,n) D" (I',ng,n)
N7 20 =0
After some manipulation, the contribution of the “D” terms to the double sum is
ijMl [(no - n)(l hed l,)]
2Ny ’

D(L,ng,n) D" (I',ng,n) = 8 (ng.n) 87 (ngom) (-D)¥7 exP{

where

8 (no,n)=Mi]exp{M:| |

k=0 2Nt
A closed form expression for this sum is

— Liln - M
A 1 exp[2 {("70 n)oy M, / NT] if (ng —n)Af T/ Ny # even integer
Sl(no,n)': l—exp[—f](no.—n)o‘)M/NT]

M, otherwise

Using these relationships, the mean signal energy at the output of the n™ tone
filter, given that the ny # n tone is transmitted, is
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”Ji(”o -n Q)MMl /NT]
[%(”0 @M/NT]

{c (0)+2 zlc (kM AL) (1= k / My ) cos[4(ng — n)w p Mk / NT]}

M, sin®
E(ng,n) = r*Lg(no) ;]Tsmg
k=1

and the mean signal energy at the output of the correct tone filter (n =) is

M,M? M, -1
E(ng)=r*Lg(ng) 12\7 {c (0)+2 ZCC(kM]At)(l—k/MZ)}
T k=1

As we mentioned above, the difference between the M-ary FSK channel bit error
rate in fast fading with continuous channe] response functions and Fourier transforms
and that obtained with A/D sampling and DFTs is small when the signal sampling rate
is sufficient to unambiguously resolve the tone filters. To demonstrate this, we show in
Figure F-14 the irreducible 8-ary FSK channel bit error rate as a function of the ratio
19/ T, for three values of the tone spacing. The solid and dashed lines in the figure are
for the continuous case and the symbols indicate the error rate for the sampled case.
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Figure F-14. 8-ary FSK channel bit error rate in fast Rayleigh fadihg channels for
continuous and time-sampled cases.
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The number of DFT points for each tone spacing is indicated in the figure, and the
channel is sampled at least 40 times per 1.

Clearly the results for the sampled case reproduce those for the continuous case.
The only significant difference between the two cases is in the sampling loss (the con-
tinuous case has no sampling loss). The irreducible error rate is independent of that
loss because it just reduces the signal amplitude of the A/D samples.
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APPENDIX G

DEMODULATION PERFORMANCE OF BINARY FREQUENCY SHIFT-
KEYING IN FREQUENCY SELECTIVE FADING WITH HOPPING

A functional block diagram of a frequency hopped, non-coherent binary fre-
quency-shift keying (BFSK) receiver is shown in Figure G-1. There are two filters for
either of the possible transmitted tones. For non-coherent hard-decision demodulation,
the filter with the largest output amplitude is selected to represent the transmitted tone.
With suppressed-carrier tracking, the output of the selected filter is used in the auto-
matic gain control (AGC), delay lock loop (DLL), and automatic frequency control
(AFC) tracking loops. Thus the demodulator output is fed back into the tracking loop
measurements in this block diagram. This is only one of several possible design con-

figurations. Other implementations employ unmodulated sync symbols for tracking,
for example.

There are two fundamental characteristics of frequency selective fading that
complicate the analysis of the FSK demodulation error rate. As pointed out in Section 2
of this report, the two-frequency mutual coherence function varies inversely with fre-
quency difference. As a consequence, the correlation between the signal components at
the filter outputs is not small as is sometimes the case for fast fading, and one is left
with the problem of dealing with M mutually correlated random variables to compute
the error rate. A further complication is that the two-frequency mutual coherence
function is complex, so the cross correlation of the tone filter outputs is also complex.
This effectively doubles the calculations necessary to compute the correlation coeffi-
cients. Thus analytic results are practical only in the case of BFSK modulation. As we
will show, the BFSK case is sufficiently tedious mathematically that there is little in-
centive to attempt to develop analytic results for higher-order FSK signaling, although
such results could, in principle, be obtained. Furthermore, the BESK case is sufficient
to achieve our goal of COMLNK validation. COMLNK, of course, readily handles
much more complicated cases involving M-ary modulation and non-linear carrier
tracking loop operation.

Frequency hopping provides two key advantages to an FSK communications link.
The primary advantage of hopping is protection from jamming, whether hostile or in-
advertent. A side benefit, if the hopping rate is equal to or larger than the modulation
symbol rate, is protection from intersymbol interference in frequency selective fading
channels.
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In this appendix we will only consider the case where the hopping rate is equal to
the symbol rate. If the hopping rate is faster than the symbol rate, then signal energy
from multiple hops per symbol must be non-coherently combined. This would add con-
siderable complexity to the analysis', although it is readily handled by COMLNK. If
the hopping rate is slower than the symbol rate, then signal energy from previous sym-
bols within a hop can interfere with the on-time symbol, and we consider the limiting
case (no hopping) in Appendix H.

In Section G.1 of this appendix we give some general results for the BFSK signal
with hopping and noise at the output of the tone filters for both continuous and sampled
channel impulse response functions (CIRFs). In Section G.2 we investigate the per-
formance of delay tracking in slow, frequency selective fading. Here we compute the
ideal delay offset for both continuous and sampled CIRFs. The BFSK demodulation er-
ror rate with a fixed delay offset is then computed in Section G.3 for slow, frequency

“selective fading. Our results show that BFSK demodulation performance in frequency

selective fading is very sensitive to the delay offset. Thus to compare simulation results
with these theoretical developments we must turn the DLL in COMLNK off, and
simulate demodulation performance at fixed values of the delay offset. In Section G.4
we calculate the BFSK error rate in fast, frequency selective fading assuming zero de-
lay offset. Finally, in Section G.5 we discuss the effects of channel delay sampling on
the BFSK demodulation error rate.

Even ignoring delay tracking, the BFSK demodulation error rate result for gen-
eral time and frequency selective fading is extraordinarily tedious to calculate analyti-
cally and is only possible because of modern symbolic mathematics computer programs
such as Mathematica® [Wolfram, 1996] used by the first-named author. To our
knowledge these are new results that have not appeared elsewhere in the literature.
Note that the tedious computation presented here is only associated with the theoretical
analysis. The COMLNK digital simulation algorithms are quite straightforward.

G.1 GENERAL RESULTS FOR FSK WITH HOPPING.

In a binary FSK communications link, the transmitted signal during the k™ sym-
bol period is

! Bogusch [1989] discusses 8-ary FSK non-coherent combining loss in AWGN and slow Rayleigh fad-
ing channels.
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m(r) =Y e/ H[i— k} :
! T

where Af is the tone spacing and T is the modulation period (or channel bit period for
BFSK). The transmitted tone is determined by the value of n;, where n, =+1 for
BFSK. The rectangular function IT(:) is defined as

1 if|xjsd

0 otherwise

I'I(x)={

Here m(r) represents a frequency offset in the transmitted signal, so the carrier fre-
quency per se is never transmitted (unless sync symbol tracking is employed).

The received signal is the convolution of the channel impulse response function
and the transmitted modulation. For a continuous CIRF the received signal is

u(t)=r[m(t-t)h(s,0)dv |,
0

where r is the mean received signal amplitude. In slow fading developments later in
this appendix, the CIRF does not vary during the modulation period, so k(t,1) is re-
placed by A(T) in this equation in this case. In either a simulation such as COMLNK or
in a hardware channel simulator, the CIRF must be sampled in delay and time. The
sampled CIRF version of the convolution equation is

N,~1

u(ty=r Y m(t —iAT)h(t,iAT) AT

i=0
where AT is the delay sample size, and N, is the number of delay samples. In later de-
velopments we use 4;(z) as a shorthand notation for A(z,iAT) At.

The received signal is processed in filters to determine which tone was transmit-
ted. The output voltage of the m™ filter (m = #1) during the k™ symbol period is

1 (k+1/2)T+71p ‘
Zpi==  [u®+n@)e ™ adr (G.1)
(k=1/2)T+1p
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where T is the delay offset. The ideal value of 1, is non-zero in frequency selective

fading. The signal is demodulated by selecting the filter with the largest output ampli-
tude’.

When the signal is hopped so each symbol is transmitted at a different carrier
frequency, signal energy from symbols other than the “on-time” symbol is severely at-
tenuated by the receiver downconverter and band-pass filters. Ideally only energy from
a single transmitted symbol is received during any sample period. Letting k =0 repre-
sent the on-time symbol, the signal contribution to the filter output voltages
[Eqation (G.1)] is

T/241,

Sm = er'c ¢ (rmAf )t % jdt h(z,7) e oA ! I'I[Z—TT}

0 ~TI2+1,

for a continuous CIRF and is

T/2+1p

N.~1 .
S, =r% oitnmaplisr 1 J " h.(t)ejn(no—m)AftH[I—ZATjI
m = T i T
~TI2+1,

for a sampled CIRF.

The complex voltage n(r) is additive white Gaussian noise (AWGN) with the
usual properties:

(n(1))=0
(n(t)n(t"))=0 , (G.2)
<n(t)n*(t')> =Nyd(~1)
where N, is the one-sided noise spectral density, and 8(-) is the Dirac delta function.

The second equation results because the real and imaginary parts of AWGN are uncor-
related. The noise contribution to the filter output voltage is then

? Hard-decision demodulation is assumed here. In coded systems, soft-decision demodulation may be
used, wherein all filter outputs are provided for subsequent processing.
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(k+1/2)T+7, .
k== n@ e dr
T(k—1/2)T+TD

Because n(z) is a complex, normally distributed random process with zero mean, N,
is similarly distributed. Thus to complete the description of the filter output noise, we
need the variance and cross correlation of N, .. The cross correlation is

1 (k+1/2)T+1p (k+1/2)T+1p

* ;- - ’ _' _ ’ ’ * ,

Co e =Ny N i) ==g  [dre/™mmms [dr e ™I yn® (1))
(k=1/2)T+1,, (k=1/2)T+1,

Because the noise n(t) is delta-correlated, this expression reduces to

sin[ym(m = m")Af T] _ Nos (3
Ln(m-mHAFT T

C,’,:’,m, =%Qexp[jn(m—m’)Af(kT+tD)]

for orthogonal signaling (i.e., Af T= positive integer) where 0, . is the Kronecker
delta-symbol:

1 ifm=m’
8 I={

™m0 otherwise

G.2 IDEAL DELAY OFFSET.

In a frequency hopped FSK receiver, time tracking is done by generating early
and late voltage samples at each hop position. The DLL then attempts to equalize the
energy of these two samples. During the k" symbol period, the early and late voltages
at the output of the m™ tone filter are given by integrating the received voltage over
the first and second halves of the tone period, respectively:

KT+,

Zp = L [[u(®) + n(t))exp[ - j(mnf )t] dt
T (k=1/2)T+1p

1 (k+1/2)T+1p

Z, == [[u@®)+n@))exp[-j(mnaf)]dr .
T kT+1p

The filter output voltage used for demodulation is just Zg + Z; . With one hop per
symbol, we only need to consider these voltages for a single symbol, and the k=0
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symbol is a particularly convenient one. Now early and late sample energy can be
evaluated for continuous and sampled channel impulse response functions.

Continuous CIRF': For this case the signal contributions to the early and late sample
voltages from the filter corresponding to the transmitted tone are

=] 2
Sp =r [ dre it L J-a’z h(t,7) n{"—"}
: T T

1p-T12
" Tp+T/2
5, =r|dre e L Jdth(t,f)l‘l{t—_l} :
5 T T
o

We assume for this calculation that the fading is slow compared to the modulation pe-
riod (7o /T >>1), so the channel impulse response function is invariant over the period

of the two time integrals. With this assumption the CIRF can be pulled out of the time
integrals to give:

[==]

Sg = LJ h(T)e /R E[——————Z(T o), li] dt
2 T 2
0

oo

S, = lfh(r)e‘ﬂ"o“f & :—:[——-—2(T o) _ 1] dt
2 T 2
0

where A(T) is the time-invariant channel impulse response function, and the trapezoid
function Z(') is defined as

1 if|x|£%
E(x)=43-|x] if 1<|x| <3 .
0 otherwise

Similarly, the on-time signal voltage in slow fading, given by the integral of the re-
ceived voltage over the entire symbol period 7, is
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o0

Sp = rJ h(T)e R )T A[-TD—T_—T} dt
0

where A is the triangle function:

1-|x| if|x|<1
A(x)= o
0 otherwise

The average signal energy of the early, on-time, and late samples in frequency
selective fading is obtained by making the usual assumptions that the CIRF is a zero-
mean, complex normally distributed random process that is wide-sense stationary in
frequency and thus has the following first and second order moments:

(h(D)) = (h(T)h(1")) =0

. , (G.4)
<h(t)h ('c’)> = G(1)8(1—1")

where G(7) is the power impulse response function defined in Equation (2.8). We note
that a phase-rotated CIRF such as

h(ﬂt) e"j(nonAf)T

that appears in the equations for the signal voltages has exactly the same statistical

properties as A(T), so the phase term multiplying 4(T) can be ignored. With these sta-
tistical properties for the continuous CIRF, the average signal energy reduces to

N 2(t-1p) 1
0

o0

<E0>=<sosg>=rzja(ﬁc)z\z[‘—_%’l}d«: (Continuous CIRF) . (G.5)
0

oo

o rl _o[2(t-15) 1
<EL>=<SLSL>=_4“JG(T)Sz[——"}—D"'E:ldT
0

These integrals can be done in closed form using the exponential form for the power
impulse response function. The reader is spared the details.
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Sampled CIRF: For a discrete (tapped delay line) channel impulse response function
the expression for the early voltage becomes

S =£A§]h‘e—j(nonAf)im:[2(iAT"TD)+_1_i|
Ema g T 2]

Similar expressions hold for the on-time and late voltages. Equations similar to (G.4)
hold for the sampled channel impulse response function:

<hi> = <hi hi’> =0

(ihir)= B8,

where an expression for the mean power in each delay sample, F,, is given in Equa-
tion (2.14). The integrals in Equations (G.5) are then replaced by a summation over

discrete delays for the sampled CIRF case:

2 Ny-l A
<EE>=% 3 piEz[MJrl}

i=0 T 2
2 Nl 2 INT—T
(Eg)=r* Y, BA [——T—D] (Sampled CIRF) .
i=0
2 ~1 :
re ' —2| 2(iAt—1p) 1
<EL>=T i=2{*—TD——5}
i=0

A delay lock loop attempts to adjust the receiver timing relative to the incoming
signal until the average signal energy in the early sample is equal to that of the late
sample. Thus we compute the ideal delay offset by solving the equation (E E) = (E L)
for 7p. To see how this works in practice, it is useful to plot the early, on-time, and
late energy for a few cases. In Figure G-2 we plot these quantities for the case where
the frequency selective bandwidth is one-tenth of the symbol rate ( fy T = 0.1) and the
CIRF is continuous. The crossover point of the curves for the early and late energy
gives the ideal delay offset, which for this case is 15 /T = 0.49 where T =0 is the
ideal offset for non-fading or flat fading channels. This is almost the same delay offset
where the on-time energy is maximum’.

3 Solving the equation (E, ) = (E, ) is not the same as maximizing <E0>.
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Figure G-2.  Early, on-time, and late sample energy versus delay for a continuous
CIRF.

When the CIRF is sampled in the delay domain, the early and late energy curves
versus delay are not as well behaved, as illustrated in Figures G-3 and G-4 for CIRFs
with two and four delay samples per symbol period, respectively. Again these curves
are plotted for a normalized frequency selective bandwidth of one-tenth, and the early
and late energy curves for a continuous CIRF are plotted also for comparison.

A local maximum occurs whenever the delay samples of the CIRF are aligned
with the receiver’s integration period. This is most pronounced in Figure G-3 where
the early and late energy curves have local maxima for delays which are integer multi-
ples of 7/2. The crossover point of the sampled CIRF early and late energy curves is at
tp /T =0.31, about one-fifth of a symbol period earlier than the crossover point for a
continuous CIRF. The sampled CIRF curves for four samples per symbol period in
Figure G-4 are somewhat better behaved, but clearly show a shift of the entire energy
curve to earlier delays relative to the continuous CIRF curves. Thus the ideal delay off-
set also shifts to a smaller value.



Figure G-3.

Figure G-4.
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Early and late sample energy versus delay for a sampled CIRF with two
samples per symbol period.
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Early and late sample energy versus delay for a sampled CIRF with
four samples per symbol period.

G-11




The ideal delay offset versus the normalized frequency selective bandwidth fy T
is plotted in Figure G-5 for continuous CIRFs and sampled CIRFs with Ny =2, 4, 8,
and 32 delay samples per symbol period. It is seen that a large number of delay sam-
ples per symbol is required to achieve close agreement between the sampled and con-
tinuous CIRF ideal delay offsets. However, this difference is of little practical signifi-
cance for delay offsets less than one-tenth of a symbol period, and for 1, /720.1
there are diminishing returns when more than four samples per symbol period are
used. Thus we conclude that four channel samples per symbol period is probably suffi-
cient for delay tracking in this case.

G.3 BFSK DEMODULATION ERROR RATE FOR SLOW, FREQUENCY
SELECTIVE FADING WITH DELAY TRACKING.

As mentioned in the introduction to this appendix, the analytic expression for the
BFSK error rate in time and frequency selective fading is quite complicated and adding
the effects of delay tracking further exacerbates this problem. Thus we have chosen to
develop analytic demodulation error rate expressions with non-zero delay offset only
for slow, frequency selective fading and to develop such expressions with zero delay
offset for fast, frequency selective fading. The first of these two cases is considered in
this subsection.

100 1 BN ¥ UL AL i ILLRERRY

P .

E\D ]
G Continuous
— [~ CIRF I
3
S
10" - —
5 u ]
[ : ]
Q - ]
§ B J
g | i
BFSK With Hopping RS
- Sampled CIRF N,=2 4 8 32
At=TN o . Lot -

10.2 L (S| |[ L L) xvnv], i "x 11[2111

10 107 10° 10’
Frequency Selective Bandwidth, fT

Figure G-5. Ideal delay offset for sampled and continuous CIRFs.
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The output of the two BFSK tone filters is given by Equation (G.1). With fre-
quency hopping, energy from symbols other than on-time symbol is attenuated by the
downconversion and bandpass filtering processes in the front end of the receiver, so
the transmitted signal can be written as

———
T ?

where ny =%1 is the transmitted tone. In slow fading, the voltage from the m™ tone
filter is then

o0

r TI2+1p
Z,=— [ die Jd’th(m)e o )(e- ‘)n[ }+N
T—T/2+1D 0 T

This equation is easily extended to the case where the channel impulse response func-

tion is sampled by replacing the delay integral with a summation over the delay sam-
ples.

Without loss of generality, we assume that the ny =+1 tone is transmitted. By
changing the order of integration, the voltage out of the filter corresponding to the
transmitted tone can then be written as

o0

Z, = rfh('t)e J(Mf KA [T TTD }d‘c +N, . (Continuous CIRF)
0

When the CIRF is sampled the output of this filter becomes

Z,=r 2 hy eI ‘A‘A[ﬂT—TA}L N, . (Sampled CIRF)

Similarly, the voltage out of the other filter (m =-1) is

Z_ =rCy [ F(t,tp)dt+N_; , (Continuous CIRF)
0
N, -1

Z_,=rCy X Flidt,tp)+N_, , (Sampled CIRF)
i=0

where the coefficient C,, is defined as
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and w,, =2 Af T is the normalized tone spacing radian frequency. We assume that the
tones are orthogonal, so Af T = an integer > 0. The filter response is

I B Y
F(t,tp)=%jx ,
0 |T-1p/>T

where the leading sign is plus for T< 1y and is minus for T> 1.

The demodulation error rate is computed from the mean energy at the outputs of
the two filters and the voltage cross correlation coefficient. Using the properties of the
continuous CIRF given in Equation (G.4) and the properties of the filter output noise

given in Equation (G.3), the mean energy of the signal plus noise at the filter outputs

are*

o0

Eo=(2,2)="" JG(I)Az F‘T—TD} it (Continuous CIRF)

0 Y '
. NS L Tiat-1 1

En=(2,25)=r{ 3 BA ["7—2}7 (Sampled CIRF)

i=0
and
E, =(z.,2}))= =3 | G(msin? 0o =%) |y L ol et
-1 B coi,, 2T Di—=

0

(Continuous CIRF)

. 4 N1 Toy,lty—iat)]| 1 _
E_1=<Z_1Z_1>=r2{_6:)_}2w_ 2 P"smz[—M—(—-D—————):"l';} le’C—’tDlST ,

(Sampled CIRF)

* The presence of ®,, in the denominator of the two expressions for E_, indicates that one is not going to
be able to set ,, = 0 to transform E_, into E .
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where vy = rzT/ N, is the mean channel bit energy-to-noise spectral density ratio. The
cross correlation of the voltage out of the two filters is complex because, as discussed
in Section 2, the two-frequency mutual coherence function for trans-ionospheric chan-
nels is complex. We show above that the noise out of the two filters is uncorrelated for
orthogonal signaling, so only the signal contributes to the cross correlation coefficient.
After some manipulation, the complex cross correlation coefficient is written in the
form

oo

. Af T+1 _ 3 !
C= <Z+1 Zi1> 2 ( ) G(’C)A[:T—T—D—:!sin M__EQ_I e_f'z‘“)M(T‘*‘TD)/T dt
Oy T 2T
0

(Continuous CIRF)

AfT+1 N,-1 A o
C=<Z+1 Zi1> 2 ('— ) T+ Z RA[IAT TD:| sin (!)MIIA’E ’CDI e—J%COM(lA’HTD)/T .
Dy T 2T

i=

(Sampled CIRF)

The integrals for the continuous CIRF case can be obtained in closed form for
the exponential form of the power impulse response function. For the sampled CIRF
case, the above expressions are evaluated numerically using Equation (2.14) for F. To
simplify the results for the continuous CIRF case, we write the expressions for E_,,
E_,, and C in terms of the normalized delay offset % p=1Tp/T.

The mean signal plus noise energy at the output of the filter corresponding to the
transmitted tone is then given by

[1+(1-L+1013p)7  2¢7(0-%) .

E, =r ( 2 o) _2¢ v +$ -1<%, <0
P Q1+A=Atp) 4eto 2,M(0%t) )

E, =r(&,-1)+ Dl_ ~ +— 0<%, <1
2_2[ -A(tp-1) _ 7\.(‘CD+1)] 4o-M )

E+1=r 7\'2 - ?\' +; TD >1

The mean signal plus noise energy of the output of the other filter is
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. _r2—2>‘“2 COS(OJM%D)+2(’3M7‘Sin(mM‘%DD_ 2 _26_7»(1+[%D|) +l 1<t <1
-l oy (W + o) oy Mroy 7 ST
'2[6-1(%0—1) _e-K(%oH)] 1}
E = 2 1,>1
‘ I A+ 05 Y ’

where again the tone spacing radian frequency is ®,, =2nAf T. The cross correlation
coefficient of the output voltages is complex, with real part Cp and imaginary part C;:

N

Ck:rQ{lO?+0ﬁ4—2k) Ai,  (I-A+Aip)sin(w,tp

(7‘2“0}2&4)2 Kol Y
[mM(:”‘z +0)ﬁ,,)sin (yp)+ 223 COS((DM%D)]e—}\’(I—TD)
| (0 + o)’
2, 2 ) o )
Cp=r* _k(l T Ou +22)‘)+ 27»1702 +(1+7»—7L1D)sm((nM1D)
(7‘2“0%4) A+ o)y O A
2[lcos(mM%D)—mM Sin(COM’ACD)]e"“D A
' W + ol 0<1,<1
[wM(nz +C°?W)Si“((°M%D)— 22 cos(mM%D)]e’k(”?o)
AW +0},)
222 cos(w 1 D)[e-k(wl) _ o MEom) ]
Co=r 2
(kz +o)§w)
@ (302 + 0} )sin (@, D)[e-M%DH) _ e—x(eb_l)]
) 2 Tp>1
2 2
(P +0d,) 2
. 2[7\’008(0‘)M%D) hand OJM Sin(mM%D)]e—l%D
| A2+ w3,
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7&[273—(1+?»)(?3+(oﬁﬂ] 2z, (1-A+A7%p)cos(wy,p)

Cp=rii— 5  + -
A+l @y (A + 03 @A
(DM( COM) M( M) | _1S%D<O
[(1)1;4(3%2 +®%4)COS(QM%D)—2K3 sin (COM%D)]‘?—MI—%)
| A2 +0d,)’
¢ = MR --NE+od)] a2z, aeA-atp)eos(oydy)
@ (A +coﬁ,,)2 @4 (M + o) oY
2o cos(@ytp) + Asin(oytp)le™ vt <1
A2+ o,
(04 (33 + 03 )cos(ytp) + 24 sin ()| e +52)
+ L
AN +cnfw)2
COM(37L2 +0),2w)cos (coM%D)[e"M%DH) - e-l(i’o—l)]
C1 = r2 5
AN + o))
202 Sin((&)M%D)[e"M%D”) - e‘)\(%u"l)]
¥ Tp>1

(?»2 +cofw)2

| Z[G)M COS ((DM%D) + KSin(O)M %D)]e—;\'%b }
T 2
A+ ol
The BFSK demodulation error rate is given in Appendix D with the substitutions

o6l =E_, 6% =E,,and ¢? oip® =C2+ C?. Thus the BESK demodulation error rate
with frequency hopping in slow, frequency selective Rayleigh fading is

1 E,-E,
R Z[I_J(E+1+E_1)2—4(C,%+C,2)} .

As one might guess from the form of the equations for the filter output energy
and the cross correlation coefficient, the demodulation error rate is quite sensitive to
the delay tracking error. To illustrate this sensitivity, we plot the mean signal energy

(G.6)
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and normalized correlation coefficient (p in the expression for C2 + C7) of the filter
outputs versus delay offset in Figure G-6 for a case where the normalized frequency
selective bandwidth f,T is 0.1, the tone spacing Af T is 3, and the CIRF is continuous.

The same parameters for a sampled CIRF with two delay samples per symbol
(Np =T/ At=2) are plotted in Figure G-7. The corresponding irreducible error rates
[i.e., Equation (G.6) with y — =] versus delay offset are plotted in Figure G-8.

A number of observations are readily apparent from these results. First, the de-
lay offset that maximizes the output signal energy of the filter corresponding to the
transmitted tone does not necessarily correspond to the minimum BFSK demodulation
error rate. Indeed, for the continuous CIRF case the minimum error rate occurs near
Tp = 0 whereas the maximum energy occurs near Tp =T/2. Second, the irreducible
error rate for the sampled CIRF case is zero for T, <~-T/2 because the normalized
cross correlation coefficient is unity in this region. This is an artifact of the sampling
(fortunately, the DLL, if operating near its ideal value, will keep the delay error posi-
tive). Third, the irreducible BFSK demodulation error rate is quite sensitive to the de-
lay offset, especially when the CIRF is coarsely sampled. An active DLL, however,
will tend to average over these delay offsets as the tracking error varies with time. For
this reason, we turn the DLL off in COMLNK when generating simulation results to
compare with these theoretical results. Therefore the comparisons have little practical
significance other than for simulation verification.

The effect of delay tracking on BFSK performance is summarized in Figure
G-9, where the irreducible BFSK demodulation error rate with the ideal delay offset
(Tp equal to the ideal value from Figure G-5) and with no offset (T, = 0) is plotted
versus normalized frequency selective bandwidth. While delay tracking does not mini-
mize the error rate, it does reduce the irreducible error rate by a factor of about 2 for
foT values greater than 2 or so. Below this value of f,7 however, delay tracking ac-
tually degrades BFSK demodulation performance slightly from the performance that
could be obtained if the receiver could maintain time tracking at the position it should
have in a benign environment (T = 0). Of course the possible presence of line-of-
sight or total electron content dynamics or both force one to do delay tracking if the
receiver is to have any chance of maintaining lock on the received signal. Furthermore,
it must be emphasized that all results involving the irreducible error rate apply only
when the signal-to-noise ratio is infinitely large, a condition that is rarely representa-
tive of actual practice.
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Figure G-8.

Figure G-9.
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It is interesting that the irreducible error rate of BFSK with hopping approaches
a limit that is less than 50 percent in severe frequency selective fading ( /7 — 0).
When the delay offset is zero, this asymptotic limit is

1 ®2, -6
Py=—|l-—H—c| (y-0e, fT—0,1,=0),
() 2{ coMqloa,sz} ° P

which is equal to 0.091 for minimum tone spacing (Af T =1), 0.011 for the AfT =3
case plotted in Figure G-9, and 9.5x10™* for Af T =10.

The effect of tone spacing on the BFSK demodulation error rate in slow fre-
quency selective fading with hopping is illustrated in Figure G-10 for a continuous
CIRF where we plot the irreducible error rate for three values of Af T. The delay off-
set is set to zero for these plots. For this case when f,T is less than 1 or so, the de-
modulation irreducible error rate decreases by about a factor of 10 for each factor of 3
increase in the tone spacing.

100 E T T TTTrrT i T TT 1 LI I LR
5 F AT j
g 10" =
0
5 = 3
LE - AfT=3 ]
g 10F el E
§ - ]
Q g L afT=10 ]
Ko e 3
Q - ) 3
s F :
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=
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With Frequency Hopping
No Delay Offset (rD =0)

10-6 L 1 llllll! ] l;ll|lll| L. Lot L]

107 10° 10' 102
Frequency Selective Bandwidth, f, T

Figure G-10. BFSK irreducible demodulation error rate with frequency hopping for
three tone spacings.
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The ideal BFSK demodulation error rate in slow, frequency selective fading with
frequency hopping and a continuous CIRF is plotted in Figure G-11 versus E_, / N, for
several values of f; T. For each case the ideal delay offset is given. At error rates
above 5 percent or so, the effect of frequency selective fading is just to shift the error
rate curves to the right by the loss in signal energy at the output of the filter corre-
sponding to the transmitted tone. This loss in signal energy occurs because energy with
times-of-arrival outside of the time interval —=T/2+ 1, £t<T/2+1Tp arrives when
the receiver is set at a different carrier frequency. Energy from the on-time symbol
that arrives early (¢ <—T/2+1p) arrives when the receiver is still at the carrier fre-
quency of the previous symbol, and energy that arrives late (1 >7T/2+ 1) arrives af-
ter the receiver has hopped to the carrier frequency of the next symbol. As the channel
bit energy-to-noise density ratio increases, the curves approach an irreducible error
rate determined by the amount of signal in the output of the wrong filter.

G.4 BFSK DEMODULATION ERROR RATE FOR FAST, FREQUENCY
SELECTIVE FADING WITHOUT DELAY TRACKING.

As discussed above the expressions for the BFSK demodulation error rate in
time and frequency selective fading are sufficiently complex that we have not included
delay offset in this calculation. Thus the signal contribution to the tone filter outputs is

T/2

S = erre‘f("onAf w1 J dt h(t,7) e ! H[t—_—EJ
0 T T
-T/2

for the continuous CIRF case. The effect of the rectangular function in the equation for
S,, is to change the lower limit of the time integral to —7/2 + 7. The extension of this
equation to the sampled CIRF case is straightforward. As before, delay integrals are
replaced by sums over delay samples. We will not consider the sampled case further
until we have derived expressions for the signal energy out of the two filters and the
cross correlation coefficient.

To obtain the BFSK demodulation error rate in Rayleigh fading we need only to
calculate the second order moments of §,,. In such fading, S,, is a complex, zero-
mean, normally distributed random variable.
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Figure G-11. BFSK demodulation error rate in slow, frequency selective fading with
ideal delay offset.
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G.4.1 Second Order Moments of S,, for Continuous CIRF Case.

Assuming, without loss of generality, that the ny = +1 tone was transmitted, the
signal energy at the output of the filter corresponding to the transmitted tone is

. T T ‘ L1 T2 g T2 .
g =(S,.85)=r[difave ™ [ar— [dr' (he, o)k (¢,7) .
0 0 =T/2+1 " =T/2+7

For the turbulent model, the expectation of the channel impulse response function re-
duces to

(h(t,1)n"(1,7) = G(1)8(1 = )plr = 1)

where the power impulse response function G(7) is defined in Equation (2.8), and p(z)
is the temporal autocorrelation function of the fading. For simultaneous time and fre-
quency selective fading we use the f =% form for p(t) defined in Section 2.

The number of time integrals can be reduced from two to one by the usual
change to a difference variable. After changing to normalized delay ({=1/T) and
time (& =t/ T) variables, the resulting expression for the signal energy out of the
m = +1 tone filter is

1
Es. =2r*[TGTO R, 4 dC
0

where the time integral R,;({) is

1~
R ()= [p(TE)1-C-E)dE .
0

We use this separation of the time and delay integrals to facilitate the extension of this
and following expressions to the sampled CIRF case. The time integrals for both the
sampled and continuous CIRF cases are the same, the only difference is whether or not
the argument of the time integral is discrete or continuous. Thus R_;({) appears in the
continuos CIRF expression for Eg ., and R,;(iAt/T) appears in the sampled CIRF ex-
pression.
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The signal energy at the output of the m =~1 tone filter is

Eg =(S,85) = de[averaeo L Ty L o
S=1 —\M-1¥-1/~ T
0 0 ~T/2+1 " =T/247

x g2 A (=) <h(z,'c)h* ', 1:'))

In a similar manner to that used to simplify the expression for Eg,,, the expression for
Eg _, reduces to the deceptively simple form

1
Es_, =21 [TG(TG) R, (§)dt .
0

where

1-¢
R, (©)= [p(TE)cos(wp&)(1-C~E)dE .
0

The cross correlation coefficient between of signal contributions to the output of
the two filters is

T T
C= (8, 80y) =r? [ du [ dv e =)
’ -0 0
| T2 g T2 o ) :
x— [di— [dr'e ™ (e h" @, 1)
~T/24+1 " T/2+1

After considerable manipulation, the real (Cy) and imaginary (C;) parts of this ex-
pression can be reduced to

1
Cp =7 Cy | TG(TE) Rep () G
0

]
C; =r* Cyy [ TG(TC) Ry (0) dt,
0

where the time integrals are

Rcr(§) =[1+ cos(a&)] Ry (C) + sin (@) [Rp (©)+Re (C)]
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R ()= [l —cos (coMC)][Rp (€)+ R (C)] +sin (@ 4 8) Rg(€)
and where the integrals Rg(C), Rc(0), and R, (C) are defined as

1-¢
R,()= [p(TE)dE
0

1-¢
Ry = jp )sin (&) dE

1-¢
Rc(D)= ,[P COS (DME;) dg .

At this point we have formally solved the problem of the BFSK demodulation
error rate in fast, frequency selective fading with no delay offset. To obtain an analytic
answer, however, one must perform the indicated integrals. Therein lies the problem.
For the f~® form for the temporal autocorrelation function and the simple exponential
form for the power impulse response function, the analytic expression for Eg_; has
more than 80 terms unless care is taken to collect together similar factors. The expres-
sions for Cy and C; are even more unwieldy. Thus a symbolic mathematics program
such as Mathematica® is necessary to have any hope of obtaining correct answers for
these integrals.

The rest of this subsection is devoted to writing down the analytic results for the
second order moments of S,,. These results are valid for the f S temporal autocorre-
lation function p(¢) and the exponential power impulse response function G(1). For
each moment we first calculate expressions for the time integrals because these are also
used for the sampled CIRF case.

In normalized units, the power impulse response and temporal autocorrelation
functions are

TG(T) =re "

and

p(TE) =[1+ T, £+ 4 (1, 8)° |
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where A =2n f,T, Ty = a4T /1, and 0 is a numerical constant (0. = 2.904630---)
defined in Section 2.

Using the normalized temporal autocorrelation function, we get the following
for the time integrals of Eg,, and Eg_;:

8(1- )T, ~15 [7.; + 7T, +15 27‘6+7 }
R+ (C) = + C t_,
: 372 372
(g) (1 C) T6 [Té Cos (mM C) + ('OM Sln(mM C)](l C) ._(1 C)T
_1 : T6 + (D%/] T6 + OJM
R (c) - [(1 - C) T6 - 1] (7‘62 —_ Cl)%/[) + A1 (c) coS ((DM C) - Bl (C) sin (COM C) e‘(l"C)Ts
- (2 + OJ?W)Z (2 + cojzw)2
2TA[(1-OT, - 3)T? - 302
R_5(0)= 10-¢ : ]2( 63 M)
- 3(17 + o))
_ Ay Q)cos(my, §)+ By ()sin(wy &) ~(1-0T,
3(12 + w}y)’
R 0= 2T2(T ~ 604 T2 + o) , A@Qcos(@y8)+ BOsin(@yl) o,

(T62 + cofw)4 E'»(Té2 + coﬁ4)4
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where

A©=[0-0T ~1){ol1-0-0OL]-12 -0 - )T}

4,0 =Ty {603 1~ 1) + 0} 18- 503, 1 - 0]
-—(,0%4 [6_0)}2w(1—§)2}(1_C)T62 -6[1+0)ﬁ/[(1._§)2]7"63

-2[2- 0} -0?|0- 0T} -1~ T +(1- 1)’ Tg"}

4, =T P30}, [2- 0}, 0- 07 ] -0}, [18- 0} 0-0?]a- 0T,
=30y [12+03,0-0°| 30} [4-0}0-0?]0-OF
+3[2+ 03, 0-0?]7 +32+ 0}, a-07]a~-OF
+30-0° T2 + -5 1]}

B =0y[0-0T -1}{o},0-0)+27, +1- )T}

B© =0y T, 30} [2- o} a-07]
~y[14-031-0?]0-9 T -2[9+ 0}~ 02|17

—2[3-0}1-0]a-0O +1 -0 I +1-0)° Té}

By©) =0y T {0i[6-0},0-0]a-¢)
+60},[4 - 03, (1-0| T +30}[4+ 0} 1-0?|a-OTZ
+30y [2+03,0-0] R +3[6+0},0-0]a-OT
+6(1-0° T3 +(1-§)° T}
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and

Ry©=R;Q)+R,,O)+R ;O +R, 4 .

The time integrals for the real and imaginary parts of the cross correlation coef-

ficient are
—@ [+ cos(@,,0)]+sin(@,, ) T, LA-0* T2,
RcR,l(C)={ M[ (o )]2 (2 ) 6} s e
3(T6 +(0M)
oy (772 +30%, )1+ cos(w,,0)]A-0T
Repr () =— M( 6 M)[2 2(ZMC)] OT o ~(-0T;
3(1F + o)
| +(5T62 + W) )sin(@ ) 1= T 10,
3(12 +0})
o, (15T +1002%, T2 +30%, )1+ cos(o
Reps@)=— M( 6 M16 M3)[ ( MC)] [1_6—(1—C)T6]
3(FF + )
+SSiH(CDM§)TgS [l+e_(]—t")T6]
3(17 + o)
{[1-cos(@0)]Ts 0y sin(0y )} A-0P T o,
Rc1,1(c)= 2 2 € 6
3(T6 +(0M)
Rm@:coM(sTg+co§4)[1—cos(mM§)](1-c)T62 0T,

3(12 +0%)’
@ (7T +303 )sin(0,8) 1-OT; a0,
3(12 +0})
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[1-cos(w,,4)] 75 70T

Reps (@)=
o3 3(7})2 +wﬁ4)3

@ (15T +1003,T7 + 30}, )sin(0,4,)

3(T7 + )

-0-0T;

8 [1-cos(w8)] TS + @ (15T +1003,T7 + 3w} )sin(w,)

Rc1,4(§) = 3(T62 +C°/2w)3

The time integrals for the complex cross correlation coefficient are then

Rer(©) = Rep 1 (€) + Reg , () + Reg 3 (0)
Re (€)= Rep Q)+ Reya Q)+ Rep3 () + Reyp 4 ()

These integrals are then used to compute the delay integrals in the continuous CIRF
case and the delay sums in the sampled CIRF case.

. The signal energy out filter corresponding to the transmitted tone is then given
by the expression

16(A = 1Ty —30% +2(15% +8T; ) e~

Fon = AT
+27L(T62 +TT; +15)(e ™ - e7)
3(M-T5)Tg
20(2T; +7)[eT = (14 A= T )e™]
i 3()"T6)2 Ty
2 {2e7% - 2420427 2+ 1), +12)e )
+
3(A-T,)’

The signal energy out of the other filter is an expression with a large number of
terms. We find this expression easier to comprehend when it is broken into multiple
terms (4), each with common denominators. These terms are:
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) 2|15 + 5T +2(24 0} ) IF + 60317 + 0l (T, + )]0 -1)T

3 e
MTE +wj)

—5TS +1505, T3 + 503, T2 + 0%,

Bz =2 5 +coﬁ,1)4
) Ty +6T¢ +3(5+wj )Ty +3(5+ 4cozw)T{; +30) (1+ 03 )Ty -
(1E + )
ATy -M)e® -e) 2(T-2) -0 |Te™
E 3=~ +—

MTe-2)7 +ol]|  A[T-2Y +coﬁ,1]2
2T +(1-30)TF +[A(BA-2) + 0}y [Ty - 0}, (A + 1)+ X2 (1-2)} Ty e

(7= + |

=TT =2 3048 2fre-(h-2)%]
37»[(7‘6 —A) +mﬁ4]3 3x[ T, - ]

E .=

4:(l+ooﬁ4 —-47\,+57\,2)T63 ~A(3+30% —61+5x2) - ]

o
3|(T 1) + ‘”%4]3

2}»‘;4 +60 (W =1)+1*(6-8h+ 512)|T, .
3A|(T - 1) +oﬁw]3

2220 +2%) + 203 AN -3)+ 0}, (A +2)

e %6
(T -0 + cofw]s

+2
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where
Eg 1 =E +E ,+E 3+E, .

Similarly, we organize the cross correlation coefficient into multiple terms with
the same denominators. The real part Cp has 13 such terms:

CoZs (l-—f’»)k[k(lsTt,’4 +100)?VIT62 +3®ﬁ4)+8T65]
" Y 3(?\.2 +®%4)(T62 +0)%,1)3

(1-e™) (15T +1003 77 +303,)

Cro=S$
A 3(12 +0})

[8xT65 +MT; ~ ) (15T +1003, 17 + 3mj‘w)](e"T6 ~e™)
Cr3 =5 2, 2\ 2, 2
31 + 0 ) [(Ts - 1)? + o]

(15T +1003, T2 + 3], ) (e —7*)

Cra=S$
e 3(L, ~A) (12 + %)’
AT (772 + 303 )| - (1-A+T;)e %]
Crs=—Su 2 (-2 2 \2
3(Ts - 1) (T8 +})
AT {2e‘A [T -n+) 1]e"T6}
CR,6 - SM 3(T6 _7\‘)3 (T62 +(,0%,1)
2 ~Ty _ -A
Cor =Sy ?\.(TG +75T6 +8)(e 6 —e )

3 (T - 1) + 0|
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{Ms[(zg )} - 0} |(7T2 + 300k )+ 20(T ~N)TE (ST + oﬁw)}e‘l

3(12 +m§4)2 [(T6 ~)° +mﬁ4]2

|
Crg =Sy
} AT +(1-30) T2 + [}, + M3 = 2)| T} (777 + 3w, )e ™™
P

+S
: 3(r¢ +w§,,)2 [(T6 -2)° +mﬁ4]2

| s Myl (A +1)+ 2> (A =1)|(772 +303 )™
3(T62 +coﬁ4)2 [(T6 - 7»)2 +co?w]2

7‘T62[T62 —2A -1 T +M(A-2)+ (z)ﬁ,,](STé2 + mfw)e'Tﬁ
3(12 + 0% )’ (7 -2 +m§4]2

+oy

2ATE (T - M)|(Ts - 1)” =303 |e™

Cro=-S
T s ead)m-n v

AT{TS - (Sh-2) T +2(1+ 0f — 40+ 5A2) T2}

*Su 2 2 2 2 P
3(T; +mM)[(T6—x) +03M]

20(3+ 30} —6h+ 507 )T e

Y 3(T62 +wﬁ4)[(T6 -1)° +co,2w]3

Mo +603 (R =1)+32 (6 -84+ 502)|T, 7T

3(1¢ +c012w)[(T6 -y +coﬁ4]3

Mob (A +2)+203 A(2 -3)+ 42 (2- 20+ 22)|T2 T

3(1¢ +co%4)[(T6 -A)° +coﬁ,,]3




20T [3(Ts - )" - ol |e™

Criy=-S
e 3(73 +coﬁ4)[(T6 -A) +coﬁl]3

AT {1"64 —4A-1T; + 2[(0% +3(A~ 1)2]7"62}e“76
3

+SM 2 2 2 2
3(T6 +coM)[(T6 -2) +coM}

4h ]l (A-1)+ A (3-30+12)| T 7T

3(12 + 03, )|(T - 1) + "’%4]3

Moj +20% (V=20 -1)+ 22 (6 - 41 +27)| 2 %

*5u 2 2 2, 2P
322 +0%)[(T - 1) + o]

2M(Ts = N)(2% +5) o,
(% -2) + 0]

CR,12 = _SM

ATy +5)[TE - 2(A+ )T + 2% +2h + 03,
6 6 -

3[(T6 -A)7+ oafw]z

M

20T [3(T; - 1) - ]
Cri3=—Sy ” —e
3[(Ts - 1)° + o]

-T

M {Ty -4+ 1) T2 + 2w, +3(h+ 1)]72]
+SM 3 (4
3[(T6 -y +mﬁ4]

47»[&)%4(?» +1)+ (W +30+ 3)] T2
3[(7‘6 -2) +cofw]3

~A

Moy +203,(A2 +20-1)+22(3? +4h+6)|T,

37 -2) + |

+Sy
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i

where Sy, = (~1)” 7. The imaginary part has 16 terms:

[ro}, (157 +1003, T2 + 30}, ) - 80T |(1-7)

C, =-S
He 30 (A + 0k, ) (1 +<n,2w)3

[0} MIST + 100377 + 30} ) - 8M (T - 1) T ] (7 —e7)
3m,, [(T6 —A) + cofw](%2 + 03}714)3

C1,3 =Sy

ATE (T2 + wﬁl){[cofw + (3 =2)| Ty - why (A +1) -2 (A= 1)} .

30, (7‘62 +m,2,4)2 [(7‘6 —A)? +oo,2w]2

M

204, AT (T; = 1) (7T¢ +303)
372 + o) [(T6 “0)% + oﬁw]z

C1,6 = _SM e—)\'

@ AT (7T +30 [ T8 =2(A-1) Ty + A(A—2) + 0}

+S
" 317 + coﬁ,,)2 [(T6 ~A)+ oafw]z ’




AT? (5T62 + cofw)[e'x —{1-%+ T6)3_T6]
30, (Ts = V)’ (T + o)

Cr7=—Su

(T -V (T =1 30|

Cig=S
18 =M 30, (T62 +03?w)[(T6 _;L)Z +@%4]3

ATy [Tsz ~(SA-2)T, +2(1+ 0} —47&+5k2)]
M 2 2 2 2 3 ¢
300M(T6 +03M)[(T6—x) +0)M}

- T6

2T (3+3w2, — 6A + 502
+SM 6 ( M ) =T

0y (12 + 0} )| (T - 1)* + 0]

S AT w3 +603 (A —1)+77 (522 - 81 + 6)] -1,

300 (12 +03)[(7 -7 + 0]

AT [wh (A+2)+ 203, (R =3)+2° (2 - 24+ 2)] .

+Su 2 2 2. 2]
30, (T +coM)[(T6—7L) +mM]

20y AT2 [3(T6 - 7‘)2 - (’3%4] A
3 4

Cro=-Sy

2

3(T62 + wﬁl)[(Tc -A)"+ 00/2\4]

5 O 4007 +2fo + 300

3(72 + 0 )[( -1 + 0

4y AT [0y (=) +2(N =31 +3)]

3(T62 +wﬁ4)[(Te -A)’ +(,)3W]3

O M [0y + 27 (W = 41+ 6) + 203 (M - 24 -1)]
+Suy 5 3 e
3(12 + 0}y )|(T - 1) + 0]

T
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30, (Ts - 1) (T2 + o))

C1,1o ==Syu

A(15T¢ - 21AT +8)7)
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20 (T - V)|(T; - 1) - 303, |
Cris =Su R
303M[(T6 —1) +ooM]

-Ts

MHTE = (Sh+2) Ty +[5W +4h+ 0} +1]}
— €
" 3coM[(T6 -’ +(o,2w]3

-A

T (SW +6M+303,+3)

o 30 [(T6 -2)° +wﬁ4]3

2[12(c72 2 (72 _ 4
AT, [k (s +87L+6)+60)M(7L3 1)+COM]€_A
oy [(T -1 +o}]

AT, [7@(73 +2h+ 2) + 2@3‘4%(73 - 3) +wy (A~ 2)

sy (T 1) + o |

G.4.2 Second Order Moments of S, for Sampled CIRF Case.

The extension to the sampled CIRF case involves replacing the delay integrals
with sums over the delay samples. Thus the signal contributions to the tone filter output
energy are

Np-1
Eg,=2r" Y PI,(i/Np) . (Sampled CIRF)
i=0
Np-1
Eg_ =2r* Y PRI (i/Np) . (Sampled CIRF)
i=0

where Np =T/At is the number of channel delay samples per symbol period. Simi-
larly, the real and imaginary parts of the cross correlation coefficient are

Np-1
Cr=-1"Cy Y PIcgplil Np) (Sampled CIRF)
i=0
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Np-1
C;=r"Cy Y PIg(il Np) (Sampled CIRF)
i=0 :
These expressions are evaluated numerically using the analytic expressions for the time
integrals derived above.

G.4.3 BFSK Irreducible Demodulation Error Rate in Frequency Selec-
tive Fading With and Without CIRF Sampling.

The BFSK irreducible error rate is plotted in Figure G-12 for one slow fading
(19 / T >>1) and several fast fading (75 / T = 0.1 to 10) channels. These results are for
continuous CIRFs and no delay offset (T =0). Three times the minimum tone spacing
is used which provides considerable immunity to the effects of fast fading for values of
Ty /T greater than one. As pointed out in the previous subsection, the slow fading ir-
reducible error rate approaches an asymptotic limit of 0.011 for small values of f,T.
For 1y /T 21, the effect of fast fading is essentially to add a small amount to the irre-
ducible error rate determined by f,T. For 1, /T <1, the irreducible error rate is es-
sentially determined by the value of T, /7 and is insensitive to the value of f,7.
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Figure G-12. BFSK irreducible demodulation error rate with frequency hopping in
fast fading channels.
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G.5 CIRF SAMPLING EFFECTS ON BFSK DEMOD ERROR RATE.

Finally, we investigate the effects of channel delay sampling on the BFSK de-
modulation error rate in frequency selective fading. As discussed above, sampling of
the channel impulse response function in the delay domain is necessary to generate
fading realizations for either hardware channel simulators or software simulations such
as COMLNK. The only parameter of the sampling that we allow” here is the number of
delay samples per symbol period, Np.

The BFSK irreducible error rate in slow, frequency selective fading is plotted
versus normalized frequency selective bandwidth in Figure G-13 for continuous and
sampled CIRFs. The tone spacing is three times the minimum for these results, and the
delay offset is set to zero.

Clearly, the error rate curves are quite sensitive to the both the number of chan-
nel delay samples and the frequency selective bandwidth. This is understood by consid-
ering the total number of delay samples N as a function of these two parameters.
From Equation (2.13), with the total power P; in the sampled CIRF equal to the value
(0.975) used in COMLNK?® and in these results, the number of delay samples is

_In(1-R )Ny

o T

When the second term on the right-hand-side of this formula is less than unity, the
number of delay samples is unity, and the irreducible error rate is identically zero. For
Np =2 and P, =0.975 this occurs when fyT 21.17, and for Np =64 this occurs
when f,T =37.7. For values of fyT that result in Ny >1,

3.7Np

T<
fo .

b

5 It has been demonstrated by Reinking [1995] that one can adjust the delay sample size and the power in
the delay bins to allow the ideal delay offset with coarse sampling to approach the ideal value with a
continuous CIRF. Presumably, one could do a similar thing with the error rate, but it is unlikely that
one could match both the ideal delay offset and the BFSK error rate simultaneously. Furthermore, it is
unreasonable to vary the channel model arbitrarily on the basis of minimizing or maximizing some
measure of receiver performance.

¢ Dana [1991] specifies the total signal power in the delay grid to be 0.975. It is now clear that a value
closer to unity should be used, and a future version of COMLNK may employ a value of 0.999.
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Figure G-13. BFSK irreducible demodulation error rate in sampled (P, = 0.975) and
continuous frequency selective fading.

the curves have a “stepped” appearance as N, varies from 2 to 3 to 4 and so on.
Eventually, when f,T is small enough that the number of delay samples becomes large,

the steps smooth out, and the sampled CIRF BFSK irreducible error rate approaches
the continuous CIRF curve.

Increasing the fraction of signal power in the delay grid, from 0.975 to say
0.999, can smooth out the steps. Using the formula above, this will increase the re-
quired number of delay samples by a factor of about 1.9 when f,T is small. The ad-
vantage, however, is that the irreducible error rate is less sensitive to the exact number
of delay samples, and the irreducible error rate curves are smoother as f,T varies, as
shown in Figure G-14.

When the tone spacing is three times the minimum value or larger, the irreduci-
ble BFSK error rate in slow, frequency selective fading is 0.0105 or less. The effect of
delay sampling is to make this irreducible error rate even smaller. For demodulation
error rates this small, a link that utilizes error correction coding and sufficient inter-
leaving will have a user bit error rate of nearly zero. Thus for many applications the
effects of channel delay sampling may be irrelevant to the user bit error rate.
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Figure G-14. BFSK irreducible demodulation error rate in sampled (P, = 0.999) and
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APPENDIX H

DEMODULATION PERFORMANCE OF BINARY FREQUENCY SHIFT-
KEYING IN FREQUENCY SELECTIVE FADING WITHOUT HOPPING

The frequency selective fading performance of a BFSK demodulator without
frequency hopping is considered in this appendix. This case differs from the case with
frequency hopping, considered in Appendix G, in that the front-end downconverter
and bandpass filters of the receiver do not attenuate energy from previous symbols be-
cause all transmitted symbols have the same carrier frequency. Thus there is intersym-
bol interference (ISI) in a frequency selective channel.

A functional block diagram of a non-coherent binary frequency-shift keying
(BEFSK) receiver without frequency hopping is similar to that shown in Figure G-1.
The block diagram in that figure is for BFSK with frequency hopping, although to tum
the hopping off one only needs to set the number of allowed hop positions to one or
otherwise disable the hop synthesizer.

We assume that the AGC and AFC tracking loops are operating perfectly and in-
vestigate the ideal delay offset in frequency selective fading. Our results show that this
ideal offset is a small fraction of a symbol period in an unhopped system. Thus we ig-
nore delay offset in developing expressions for the BFSK demodulation error rate.

In the next section of this appendix we give some general results for the BFSK
signal and noise at the output of the tone filters in terms of the transmitted waveform.
Then in Section H.2 we consider the ideal delay offset for this case. In Section H.3 we
derive the demodulation error rate with and without sampling of the channel impulse
response function (CIRF). The results for slow fading in this case are sufficiently com-
plex that we have not attempted to extend them to the case of fast, frequency selective
fading. This extension is straightforward, but the result would involve even more
terms than the result for the case with hopping, which takes several pages to write
down in Appendix G.

H.1 GENERAL BFSK RESULTS.

In a BFSK communications link, the transmitted signal during the k™ symbol is

£ = f'“‘"kAf”n[i—k] :
m(t) % e =




where Af is the tone spacing and T is the symbol period. The transmitted tone is de-
termined by the value of n;, where n, =x1 for BFSK. The rectangular function IT(")
is defined as

i [x]<2

0 otherwise

H(x)z{

Here m(r) represents a frequency offset in the transmitted signal, so the carrier fre-
quency per se is never transmitted, assuming that suppressed-carrier tracking is em-
ployed.

The received signal is the convolution of the channel impulse response function
and the transmitted modulation. For a continuous CIRF, the received signal is

u®y=r[m@-1htr)dt
0

where r is the mean received signal amplitude. In slow fading the CIRF does not vary
over the period of time that energy from a single transmitted symbol arrives at the re-
ceiver. Thus in slow fading A(z,7) is replaced by A(7) in this equation.

In either a simulation such as COMLNK or in a hardware channel simulator, the
CIRF must be sampled in delay and time. The slow fading version of the convolution
with a sampled CIRF is
N -1
u(t)y=r Y m(t—iAT)h(IAT) AT
i=0
where At is the delay sample size, and N, is the number of delay samples. In later de-
velopments we use %; as a shorthand notation for h(iAT) AT.

The received signal is then processed in tone filters to determine which tone was
transmitted. The output voltage of the m™ filter (m = %1) during the k™ symbol pe-
riod is

k+1/2)T+1p

Zje = 1 [ [u@) +n(@)])e /™4 ar (H.1)
T (k-1/2)T+1,,



where T, is the delay offset that is non-zero in frequency selective fading. Hard-
decision demodulation is performed by selecting the received symbol to be that corre-
sponding to the filter with the largest output amplitude.

The complex voltage n(r) is additive white Gaussian noise (AWGN) with the
usual properties:

(n(0)) =
(n(t) n(t')) =0 , (H.2)
(n()n” ()= Ny 8 —1")

where N is the one-sided noise spectral density, and d(-) is the Dirac delta function.
The second equation results because the real and imaginary parts of AWGN are uncor-
related. The noise contribution to the voltage out of the tone filters is then

(k+1/2)T+1,

Npp==  [n@e ™™g

T (k-1/2)T+1,,

Because n () is a complex, normally distributed random process with zero mean, N, i
is similarly distributed. Thus to complete the description of the tone filter output noise,
we need the variance and cross correlation of N, ,. The cross correlation is

1 k+1/2D)T+1p (k+1/2)T+71)

Count = (Np Nopa ) == [dee™ ¥ [y MmO iy 7))
T* 112741, k-1/2)T+1,

Because the noise n(¢) is delta-correlated, this expression reduces to

) sin[{n(m - m)AfT] N,
Inm—-mHNFT T ™™

cr . = %exp [j(m—m) AF (kT + 1, (H3)
for orthogonal signaling (i.e., for Af T= positive integer) where 5, - is the
Kronecker delta-symbol.

After some manipulation, the signal contribution to the output of the m™ filter
in slow, frequency selective fading is

w (+D)T+1, 124y

Sa=rY,  [du h(r)e ) Jdr e 'H[—-T—TH] (H.4)

=0 (1-DT+1, e
- D




for the continuous CIRF case. We will consider the sampled CIRF case later, after we
have investigated the effects of delay tracking. In further developments, we find that it
is convenient to divide this signal into three parts, the on-time contribution from the
k™ transmitted symbol and two contributions representing the ISI from previously
transmitted symbols. The on-time signal contributions to the filter output voltages are
given by the / =0 term in Equation (H.4):

rety l T/2+1,
Som =7 Jd’ch(’t)e—](n“mf)t = J ds el H[Ei} : (H.5)
m=r T T
“TI2+1,,

The ISI contribution to the filter outputs is given by the /=1 terms in Equation (H.4).
After changing variables in the delay integral, we get

oo 2T+TD

Sim=rY, |dvh(t+IT)e  rumrmmalie]

=0 T
T/2+7, .
x4 J dr eI ee1 )7 ’H[E———TH}
T T
~T/2+1p
To aid in the evaluation of the filter cross correlation and output energy, the ISI con-

tribution is divided into two parts, each with a delay integral over the range 1T to
T +1p. These two terms are

= THo . | T
S} m= rz JdT h(T + lT)e—j(nk_l_lnAf)(T+[T) _— Jdl e—/(m—nk—l—l)nAft (H6)
| =01 ~T /241,
o T+1p . 1 T/2+1p
SP =1y  [duh(1+1T)e )] — [ gy pmilmomar)mbft 7
| = ~T12+1

The total signal contribution to the filter output is
Sy =Som +Sim+57
m O.m I.m Im

H.2 IDEAL DELAY OFFSET.

In an FSK receiver that does not use sync symbols, time tracking may be accom-
plished by generating early and late voltage samples from the first and second halves of
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the modulation period. These samples are taken from the filter with the largest total
output amplitude, which is the one chosen to correspond to the transmitted tone. The
DLL then attempts to equalize the energy of these two samples. Rather than calculating
the early and late samples, we are going to find the delay offset 1, that maximizes the
signal amplitude out of the correct filter. As we have shown previously, this should be
close to, if not exactly equal to, the delay offset found by a DLL that equalizes the am-
plitude of the early and late samples. Ultimately, we are going to show that the delay
that maximizes the output amplitude is a smaller fraction of the symbol period without
frequency hopping than it is with hopping. We then use this as justification for ignor-
ing delay in the error rate analysis. Thus we are not interested in the exact value of
Tp, but rather we want to show that T, /T is relatively small for this case.

Assuming that the receiver selects the output from the filter corresponding to the
on-time transmitted tone (i.e., the signal from the m = n, filter during the k™ symbol
period), the on-time signal contribution to the correct filter is given by Equation (H.5).
With m = n;, the time integral in this equation is just the triangle function, so

T+1p
SO,m =r J-h(»c)e"(nkﬂAf)T A[%:‘ drt m=mn; , (HS)
0

where
A(x)={1—|x| 1f]x]S'1 |
0 otherwise

The ISI terms in Equations (H.6) and (H.7) contain contributions from previously
transmitted symbols (k—/, [ >1) and thus have the same form for either the correct or
the other filter.

The signal contribution to the energy at the output of the correct filter is
Es=(S,S,)=r*(Ey+E} +E} +Co; + Cy)

where the normalized' energy contributions are

' Normalized by the mean received signal energy in the absence of propagation effects, .
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Cy = Re[<s, nStm)] -
In evaluating these expectations, one gets expectations of the CIRF that reduce to

<h(t)h*(t’)> =G(1)8(1-1') ,

where G() is the power impulse response function [Eqn. (2.8)], and & (') is the Dirac
delta function. The other two cross terms in the expression for the signal energy are
then identically zero because the S, and S}{m terms have no overlapping regions in
their delay integrals.

The signal energy out of the correct filter can now be computed using the delta-
correlation property of the CIRF. The on-time contribution in normalized delay units
(E=1/T)is

1+T,

Eo =5 (SomSom)= [TGION(C-2p)dC .
0

where %D =TD/T .

The ISI terms are a little more difficult to compute. For example, the signal en-
ergy of first ISI term 1s

o T+Tp T+1,

E}=;12—<S},m5}y*> i Y a4 jdr( (v+IT)h* (¢ +1'T))

1=0 I'=0 1,

-T/2 -TI2 )
X—}- J-;; 1 J‘:.Z,; iy —m) = j(ny o —m)RAR = jry _ RAF(THIT )+ jny _y_ TAF (T +1 T)>

]w—T/2+1 ~T/2+1p
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We have made the physically reasonable assumption that the CIRF and the modulation
are uncorrelated so that the expectations of the two can be factored into two terms. The
expectation of the CIRF forces 1" =1 and I’ =[. The expectation of the phase term
then reduces to

<e j(nk_,_,—-m)nAf(t_t')> _ 1 [1 4ot j21tAf(t-t')]
2

because, with equal probability, n,_,_; is either equal m or it is not. In the latter case,

n,_;.y —m=12. The signal energy of the first ISI term then reduces to
141,
o 4sin*[Lo, (-4
El=ly TG[T(G+ D4 (G~ 4p)? +—— E ’;’(C o] g
210 Wy
ip
where ,, =27 Af T. Similarly, the energy of the second ISI term is
1+%,
> 4sin*[fo,(C-1p)
E2=1Y | 1G[TC+ D (1-L+p) + k ”z”(c olll e
215 Wy
%D

The on-time ~ ISI cross correlation term is

oo T+tp T+1p

1 . o B
r_2<50»m S}vm>=l§6 {‘“ Jodf (n(t)h" (x +ZT)>A[T T"D}

1 “T/2+w _ . ] , )
o Jdt e—j(nk_,_l—m)nAf t— ja RAFU+ jn, __ TAf(T +1T)>
~T/2+1p

The CIRF expectation again forces 1’ =1 and [ = 0, and the phase expectation is

<e‘j(”k-1‘m)“Aﬂ+J'("k-|‘"k)ﬂAfT> _ 1[1+eijnAf(t—t)] .

The on-time~ISI cross correlation term is then

+
>

1

Cor =2

D

TG(T¢) A(C— %D){C_%D - %—sin[mM(C—’cD)]}dC )

M

6—\)(

H-7




where S, = (DY T,

The ISI cross correlation term is

o T+1, T+71,

%(S}Sﬂ i Y Jar jdr( (T+IT)h (1+1'T)>
r =0 I'=1 1,

~T/2 T/2+1 )
x_l_ J;; ._1_ Jd?'<e"j”k-/—1“Af(T“"”)*’f”k—/'”Af('f""['T)“"j(”k-/ j—m)rAfi= (- )nAf">

~T1247, ° =T12+7
Once again the CIRF expectation forces 7' =1 and [’ =1, so the phase expectation is

<e J(pmpoy =g JRAF (THT Y j (g —m)RAfr= jny_ —m)TAS > .

At this point it is convenient to pick a value for the transmitted tone, and we select

n, =m=+1. The mean signal energy out of the correct filter is in fact independent of
the choice for n,, but one has to evaluate the ISI cross correlation for both choices to
demonstrate this. The phase expectation depends on n,_; and n,_,_;. Assuming that the
transmitted modulation is uncorrelated from symbol-to-symbol, there are four equally
likely possibilities:

Mgy M) Probability
Value Value of Occurrence
+1 +1 :
+1 ~1 +
-1 +1 I
-1 -1 ;11-

The phase expectation is then given by the expression

<€ (A= )JRAf(RHIT)+ j(ny_ g —m) A= j(ny_ —m)TAS >

— % [1 4 o 2T (THTH2AR | 2mAf(THT)-2mjbft | e—anAf(t—r')]



The time integrals in the ISI cross correlation term can now be done in closed form
with the result

1+% )
Ch=t3 | mTe[TC+D)(C-10)(1+1s —c)_4S‘“2 H‘”f(c“’))]
2o . Wy

For the exponential form of the power impulse response function given in Equa-
tion (2.8), the sums in the above expression can be done directly:

S TG[T(G+IT)|=he™S, |
I=1
where A =27 fyT and
N oM _ €
SO = Ze = - (H9)
The delay integrals can now be done analytically, and the signal energy out of

the correct filter, as a function of the normalized delay error 15, and frequency selec-
tive bandwidth A, can be calculated. Writing the signal energy in two terms

ES = FZ(ES,I + ES,Z) s

the second of which is proportional to S,, we get following:

o - (Mp)* =2MA+ 1), + A2 +24+2 M+l g, 1= g,
S1= 22 22 A+ @2
Y (H.10)
3 A2 +2 oMot _ 28,7 MEoH) _ SMK[M}» -2)+ 0)12\4] oMo ’
20 (2 + (ofw)z (@ + (oﬁ,,)z




A2 —A+2 i A HA+2 ~A(3p+) 1—e* _a
Eg, =S5, {———-——z—e b TeTMIT o~ Mo
2K 202 A+

SMMA-4)+ 03] Lo SAMA+4)+d] L : (H.11)
- o _ )

2 + 03 )’ 22 + 0% )’

tp+1)

where, again, ©,, =2nAf T and Sy, = (~D¥ """ Note that the flat fading limit
(A — o) of Eg; +Es, is unity.

Rather than developing similar expressions for the early and late signal energy
out of the correct filter so that we can find the ideal delay offset, we are going to ap-
proximate the delay offset by that which maximizes the above expression. This delay is
plotted in Figure H-1 versus normalized frequency selective bandwidth, f,T. For
comparison, the delay offset that maximizes the signal energy out of the correct filter
of a BFSK demodulator with frequency hopping is also plotted in the figure. Both of
these curves are for a continuous CIRF, and for the case without hopping, the tone
spacing Af T is two’. The delay that maximizes the output energy of the unhopped sig-
nal approaches one-third of a symbol period as f,T approaches zero.

However, we will show that the irreducible error rate for this case is below
10 percent only for f,T =0.3, and in this range the ideal delay offset is less than 0.13.
In further developments of the BFSK demodulation error rate for this case, we will as-
sume that the delay offset is zero to simplify somewhat the resulting expressions for the
signal energy out of the other filter and the cross correlation coefficient.

H.3 DEMODULATION ERROR RATE WITH CONTINUOUS CIRFS.

To calculate the BFSK demodulation error rate we need the second order statis-
tics of the signal contributions to the outputs of the two filters (i.e., the two output am-
plitudes and the cross correlation coefficient). Equations (H.5), (H.6) and (H.7) are
used to compute these statistics. The signal energy out of the correct filter is already
given by the two terms in Equations (H.10) and (H.11) evaluated at T, = 0. Rather

* Here the signal energy out of the correct filter depends on the tone spacing because the ISI contains
contributions, with equal probability, from both possible transmitted symbols. In the hopped case, the
output energy of the correct filter is independent of the tone spacing. The reason for choosing Af T = 2
for these results will be apparent later in this appendix.
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Figure H-1.  Ideal delay offset that maximizes the correct filter output amplitude for
BFSK modulation with and without hopping.

than just writing this expression down, we find it convenient to express the signal en-
ergy and cross correlation coefficient in terms of integrals over delay. These integrals
can then be transformed to sums to get the second order statistics for the case where
the channel impulse response function is sampled in the delay domain. It is also con-
venient, although not absolutely necessary, to choose a value for the on-time transmit-

ted symbol, and we choose n;, = +1. The demodulation error rate is independent of this
choice.

With our choice for the on-time transmitted symbol, the normalized signal en-
ergy out of the correct filter (m=n;, =+1) is

E,= rl2< ‘SO,H + S},+1 + 512,+1|2>
B ;17{<S0,+1 50,41 > T2Re [<S0,+] St >]

(S} 515 )+ (5700 SE2 )+ 2Re[(51 522,)]
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Cross terms of the form

<SO,+1 S12,+l>

are identically zero because there is no overlap in the delay integrals of the two terms.
Each of the terms in the expression for E_; is given by expressions in the previous
section with T, = 0. The signal energy out of the correct filter is then given by

E,=Ry—R +3Ry+Rsy+3Rsy —Rs3+5So(Ry— Ry + Ry + Rg; + Rs, ~2Rs3)
(H.12)
where S is given by Equation (H.9). The R integrals are defined as

Ry = _I[TG(TC) dg=1-¢"
0

1 _ e
R = fT(;(Tz;)gdgzl_Q%l_)_
0
] 2 (A2 +20+2)e*
R, = [TG(TC)(*dl = ( +7€’- ? )
' 0
1 S A(1-e7*
RS,l ——-%{ TG(TC)SID(COM(_,)dc =——A%\‘2—(;*-0?2
I 2(1-e*
R, _——%g TG(TC)sinz[%ch]d§=—7L(7—:5%—4—)
g 1 ‘ SMK[QK(I—e")‘)—(?LZ+mfw)e')‘]
Rgs = —Bﬂi (j) TG(TT) ¢ sin (0, 8)dl = - e +co%4)2

1
Rg, = —OSJ—Z [ TG(TC)(1-28) sin® [T @,,¢]d¢
0

_ SuOu [k(kz + o3 )(1+e7)=2(307 +(oﬁ,,)(1—e'>‘)]
2032 +co,2w)2
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Ry = | TO(T0)L (1~ C)sin(wyl) &

_2hay (102 + 03 1+~ (3 ) (1- )

1

Rc = | TG(TC)E (1~ E)cos (e L) dg

M o)1) 20 (1 303 1)

(K2 +coﬁ,,)3

Closed form expressions for these integrals are obtained using the exponential power

impulse response function [Eqn. (2.8)]. The latter three integrals will be used in subse-
quent expressions.

The normalized signal energy at the output of the other filter (m =-1) is

1 2
E__l = 75‘< ISO,-I + S},—l + S12,—1l >

_ ;17{<50’_1 So.1 > +2Re [<So,—1 S )]

(S 1L} (570 ST 2Rel (50T

Terms from ISI only (those on the last line of this expression) are equal to the corre-
sponding terms in the expression for E_;:

(St 8i52) = (St Shn)
<S]2,_1 512:1> = <S12,+1 S12:-l> ’
2Re[(s}1 5771 )] = 2Re[(S1. 571 )]

because these terms only depend on previously transmitted symbols, and are independ-
ent of the on-time symbol. Thus the first two terms in the second expression for E_,
(those on the middle line) must be evaluated.
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The on-time signal energy is

Eo, 1—”—<So 150, 1>

7 T/2 T/2 . N
dt J <h(1)h (T )> ~jnaf(1-1') _[dt J’dt/eZR_/Af(t—t)
0 _rioet ] o1 aer

O —]

The CIRF expectation forces 1T’ = T, so this expression collapses to
4 !

EO."‘] = JTG TC Sln [ Q)Mc]dt_}: RS,2 .
O3

The on-time ISI cross correlation term for the other filter is

. o T T
r—12—<50,—1 S},*_1>=IZOJ tfdv (k(t)h" (x+1T))
=00 0

1 T/2 1—T/2+T

,[ dr = _[ ar’ <e— JRAF+ jrn,__ AF (U HT ) +2mAf- jr(14+n,_,_, AR >
~Ti241% =T/2

Again the CIRF expectation forces 1" =1 and [/ = 0. The phase expectation then reduces
to

<e— Jn(1=n,_, )aft+2mjafi~ jn(1+nk_l)Afr'> - %[eZRjAf(t—t’) + e—27tjAf(‘c—r)] .

The cross correlation coefficient for this case reduces to

Cor. -1 =7 2 Re[<50 15 >]

_J TG(TC) Loizsmz (Loyt)- —gM—CSin (coMC,)}dC “Ry, 4R
0

M M

Combining terms gives the following for the signal energy at the output of the
other filter:

E, = %(R2 +Rg, —2Rg3)+1Sy(Ry = R, + R, + Ry + Rg 5 ~2Rg3) . (H.13)
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All that is left to do to calculate the BFSK demodulation error rate is to compute
the cross correlation coefficient of the outputs of the two filters. Expanded out in terms
of the three components of the output signal, this cross correlation is

€= (50151} = 25 {80155+ (S0 1) {80157
+(S) 1 S5 ) +(Sha 81y )+ (1 520
+<S12’+1 S*O,—I > + <S12’+1 S},*—l > + <S12,+1 Slz,*—l >}

Two of these terms are zero because there is no overlap in the delay integrals, so

<So,+1 512—1> = <512,+1 S*o,-1> =0 .

This leaves only seven terms to evaluate, each of which can be complex. These terms
are reduced in exactly the same way as the energy terms. Expectations of the CIRF re-
duce the number of delay integrals from two to one, and expectations with the on-time
component eliminate all terms with [ >21. Expectations of the modulation involving just
one transmitted symbol reduce to two terms, and expectations of the modulation in-
volving two transmitted symbols reduce to four terms. The reader is spared the tedious
details. After considerable algebra, the real (Cy) and imaginary (C,) parts of C can be
reduced to

Cr=35(1+ So)[Rc —Rg; —Rg, + 2Rs,3] 14
C; =31+ So)[2 Rs4— Rs,s]

The BFSK demodulation error rate without frequency hopping is given by the
expression in Appendix D with the substitutions

2
1

o3 =r’[Eq+v7"] | (H.15)
2

where Yy = rzT/NO is the symbol (or bit for BFSK) energy-to-noise spectral density
ratio. Thus the BFSK demodulation error rate in slow, frequency selective Rayleigh
fading is
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> 1 E+I - E—l

o (H.16)
2 2\/(15+1 +E + 2\(")2 —4(Cz +C7)

The BFSK irreducible demodulation error rate without frequency hopping
[Equation (H.16) with y — oo] in slow, frequency selective fading channels with con-
tinuous CIRFs is compared to the value with hopping from Appendix G in
Figure H-2. Without hopping, the ISI drives the irreducible error rate to 50 percent
for small values of the normalized frequency selective bandwidth, f,T, whereas the
irreducible error rate with hopping approaches about 0.02 in this limit for Af 7T =2
tone spacing.

For values of f,T 23 and AfT =2 the irreducible error rate without hopping is
less than that with hopping. These curves do not cross, however, if we compare the ir-
reducible error rates with three times the minimum tone spacing. This suggests that
there is a significant variation in the irreducible error rate with tone spacing for BFSK
without hopping.

Because the expressions for the BFSK error rate depend on the tone spacing in a
rather complicated way, it is instructive to plot the irreducible error rate for various
values of the normalized tone spacing Af T. These plots are in Figure H-3 for Af T in
the range 1-10. Surprisingly, the irreducible error rate depends, in a significant way,
on whether or not the normalized tone spacing is even or odd, and there is an optimum
tone spacing which is twice the minimum tone spacing.

A word of caution is necessary. Based on our results for sampled CIRFs pre-
sented in the next section, the rich behavior of unhopped BFSK demodulation perform-
ance with tone spacing in frequency selective fading depends on having an infinite
bandwidth. Because real transmitters and receivers are band-limited, it is unlikely that
an actual system will have performance that is this sensitive to the value of the tone
spacing. We address the this in more detail at the end of this appendix.

The BFSK channel bit error rate without hopping for the optimum tone spacing
(Af T =2) and for slow, frequency selective fading with continuous CIRFs is plotted in
Figure H-4 versus E_, / Ny for several values of fyT,.
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H.4 DEMODULATION ERROR RATE WITH SAMPLED CIRFS.

When the channel impulse response function is sampled in the delay domain, as it
must be in software simulations or in hardware channel simulators, the on-time signal
contribution to the output of the tone filters when the delay offset is zero is

T/2
Np—-1 .
—r i h —j(n,mAf st Jdl‘ j(m- nk)nAftH[l—lA’t} ,
T T
=T/2

where Np is the number of channel delay samples per modulation symbol period.
Similarly, the ISI contributions are

] o Np-l o )ianir) 1 ~T/2+iAt p Jray
_ ~ j{ny i AF)(iAT m—n,_;_, ) RAf 1
Sim=r2 2 hun,e T Jdt e Tk
=0 =0 -T/2
o Np-1 T/2
2 _ J(ny_ mAL) ({AT+HIT) 1 —j{m-n,_ )nAft
Sim=12 X Biuin, € T Jdt e ! .
I=1 =0 —T/2+iAt

The time integrals in these expressions have exactly the same form as they have for the
continuous CIRF case. The expressions written down in the previous subsection for the
second order moments of the tone filter outputs are valid here when the delay integrals

are replaced by delay sums. Equations (H.12), (H.13), and (H.14) still hold, with some
modification described below, where

Np~1
Ry = ZPi

i=0

Np-1

SR (N)

i=0

Np-1
R, = ZP(Z/ND)

i=0

S Np-1

RSl ——"('D"‘— z PSln[(!)M(l/ND)]

M =0
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4 Np-l
Rsp == X Psin’[30,(i/Np)]
Wy =0
Sy Mot . .
RS,?) —_(_D_ Z [(Z/ND)SIH[(DM(l/ND)]
M =0
g Np-l
Rg,=——M % R[1-2(i/ Np)sin®[$wy(i/ Np)]
M =0
Np-1
Rgs= zo P(i/ Np)[1=(i/ Np)]sin[o(i/ Np)]
Np-1
Re= Y, B(i/Np)[1-(i/Np)|cos[wy(i/Np)]
i=0

for sampled CIRFs. The upper limit in the delay sums, N —1, in these expressions is
replaced by N, —1 when N, < N,. Equivalently, one could evaluate these expressions
by setting P. =0 for i=2 N..

The mean power of the sampled CIRF in each delay bin (F) in terms of the
normalized frequency selective bandwidth (A = 27t £,T') and the number of delay sam-
ples per symbol period is [Equation (2.14)]:

P = (1 _ e—MND)e—iMND

1 2

and the total number of channel delay samples is

In(l- P )N
NT=1_££__“_)__D_ , (H.17)
A
where P, is the fraction of signal energy in the sampled delay grid. The current DSWA

specification for P, is 0.975 [Dana, 1991].

The modification mentioned above is necessary because with a sampled CIRF
there are not an infinite number of delayed symbols in the ISI. The ISI contributions to
the second order moments have the form

oo Np-1
Ex=lz 2 Pu, Ry(i/Np)
=1 i=0
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where Ry (i/ Np) is one of the delay sums. Because the sampled CIRF has an exponen-
tial fall-off for P,

/Y
Pi+lND_e F,

and the ISI sum can be separated from the sum over the delay:
N/ Np-1 Np-I
Ex"—“[ 2 e"XM ZR‘RX(HND)} ’
I=1 i=0

where N./Np is the number of delayed symbol periods in the sampled CIRF. There
are two cases. When N, < N, only energy from the immediately preceding symbol
contributes to the energy received during the on-time symbol period, and

EX=O N’E<ND .

When NT > ND’
N./Np-1 Np—Ii Np-1
R e Y R
I=1 =0 i=0

where N,j is the remainder of N, divided by N. The second term in this expression
is evaluated only if N.p >0.

The BESK irreducible error rate for Af T =2 in slow, frequency selective fad-
ing without hopping and with a sampled CIRF is plotted in Figure H-5 for several val-
ues of the number of channel delay samples per symbol period and for the current
specification for total signal power in the delay grid, P, = 0.975. For comparison, the
irreducible error rate when the CIRF is continuous is also plotted in the figure.

As was the case for BFSK with hopping, the error rate curves are quite sensitive
to the both the value of N, and the frequency selective bandwidth. This is understood
by considering the total number of delay samples N, as a function of these two pa-
rameters given in Equation (H.17). When the second term on the right-hand-side of
this equation is less than unity, the number of delay samples is unity, and the irreduci-
ble error rate is identically zero. For N =2 this occurs when f,721.17, and for
Np =16 this occurs when f,T 29.4. For values of f,T that result in N; >1, the
curves have a “stepped” appearance as N, varies from 2 to 3 to 4 and so on. Eventu-
ally, when f,T is small enough that the number of delay samples becomes large, the
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Figure H-5. BFSK irreducible demodulation error rate in slow, frequency selective
fading with sampled CIRFs and P, = 0.975.

steps smooth out, and the sampled CIRF irreducible error rate approaches the continu-
ous CIRF curve.

The stepped behavior for small values of N.. can be smoothed out by increasing
the fraction of signal power in the delay grid from 0.975 to 0.999. The resulting BFSK
irreducible error rate is plotted in Figure H-6. On the basis of these results and similar
ones in Appendix G, the value of P, in COMLNK may be increased to 0.999 in a fu-
ture version of the code.

Another effect of sampling the channel impulse response function in delay is that
the signal spectrum is effectively truncated. To demonstrate this, we present a few gen-
eral results for the output of a matched filter when the CIRF is sampled. The point of
this digression is to show the effect of sampling and bandlimiting on the irreducible er-
ror rate plotted in Figure H-3. In discussing the results in this figure, we state that the
rich behavior of the error rate with tone spacing depends on having a transmitted sig-
nal and a receiver with an essentially infinite bandwidth. We demonstrate this in the
developments that follow.
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Figure H-6. BFSK irreducible demodulation error rate in slow, frequency selective
fading with sampled CIRFs and P, =0.999.

Consider a transmitted rectangular pulse with a frequency spectrum M(®). This
signal then propagates through a channel with a continuous CIRF for the moment. In
the frequency domain, the channel transfer function (i.e., the frequency spectrum of
the fading) is the Fourier transform of the CIRF:

H(o)= c’fh('c)e'j“’T dt
0

For the purposes of this calculation we consider the channel to be slow fading so we
have suppressed the time dependence of the CIRF and H(w). The signal contribution to
the output of a matched filter is then given by the inverse Fourier transform:

S(t) = f\M(m)F H(t,0)e’®" 512—% ,

—c0
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where 7 in this equation is the offset of the receiver’s delay tracking loop. For a single
transmitted rectangular pulse of duration T, the combined signal and matched filter
spectrum 1is

When the CIRF is sampled these two Fourier transforms are discrete. The fre-
quency sample size A is related to the sampled delay grid size At and the number of
frequency samples:

_2n
NpAt

A®

b

where 1/ At is the unambiguous bandwidth represented by the sampled CIRF. The ex-
pression above just divides this bandwidth into N frequency bins and converts fre-
quency in Hertz to frequency in radians. The sampled channel transfer function is the
discrete Fourier transform (DFT) of the sampled CIRF, A = h(iAT)At. Thus

Ne-1
H(kAow)= Y h;exp(-2mjik/Ng)  (-Np/2<k<Ng/2-1) ,
i=0

and the signal contribution to the output of the matched filter is

S(r):-]—V—Q Ne/2-] sinz(nNDk/NzF)
N «="Ny12 (7Npk/Ng)

H(kAw)exp[2mjk(t/ At)/ Ng]

where N =T /At is the number of delay samples per modulation period. The unam-
biguous radian frequency bandwidth represented by the sampled channel transfer func-
tion and this DFT is

I <rro< .
At At

For the minimum number of delay samples per modulation period (Np =2), the
frequency bandwidth of the DFT extends between the first nulls in the sinx/x spec-
trum of the signal (i.e., —=n < TNpk/ N <+7), and the rest of the sidelobe structure of
the signal is cut off. As N is increased, more-and-more of the sidelobe structure of
the signal is included in the DFT. Thus the primary effect of increasing Ny, is to in-
clude more of the signal spectrum sidelobes.
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The BFSK irreducible error rate without hopping for sampled, slow fading
channels is plotted in Figures H-7 and H-8 for 2 and 64 delay samples per modulation
period, respectively, and for normalized tone spacings of 1, 2, and 3. The total signal
power in the delay grid is set at 0.999 for these results. Note that the abscissa is differ-
ent in the two plots.

For Np =2, the rich behavior of the irreducible error rate with tone spacing is
not evident as the plots for the three tone spacings fall essentially on top of each other.
The irreducible error rate for this case is zero for f;7 22.2 because the number of
delay samples is unity for f; in this range. We expect that similar curves would result
if the irreducible error rate were to be calculated for a continuous CIRF when the
transmitted signal spectrum is attenuated outside of the first nulls. The irreducible er-
ror rates plotted in Figure H-8 for Np =64 are similar to the corresponding curves in
Figure H-3 for a continuous CIRF because in this case most of the sidelobe structure of
the transmitted signal is included in the DFT.
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